

MONITORING YEAR 1 ANNUAL REPORT

Final

LONE HICKORY MITIGATION SITE

Yadkin County, NC DEQ Contract No. 6897 DMS Project No. 97135 DWR No. 20161044 USACE Action ID No. SAW-2017-00100 Yadkin River Basin HUC 03040101

Data Collection Period: May 2019 – November 2019 Final Submission Date: January 14, 2020

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699 - 1652 **PREPARED BY:**

Wildlands Engineering, Inc. 1430 South Mint Street, Suite 104 Charlotte, NC 28203

> Phone: 704.332.7754 Fax: 704.332.3306

January 14, 2020

Mr. Paul Wiesner Western Regional Supervisor NCDEQ – Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801

RE: Lone Hickory Mitigation Site – Monitoring Year 1 Report Final Yadkin River Basin – CU# 03040101 – Yadkin County DMS Project ID No. 97135 Contract # 006897

Dear Mr. Wiesner:

Wildlands Engineering, Inc. (Wildlands) has reviewed the Division of Mitigation Services (DMS) comments from the Draft Monitoring Year (MY) 1 report for the Lone Hickory Mitigation Site. Wildlands' responses to DMS' report comments are noted below in *italics*.

DMS comment; Cover Page: Please update the DWR # to 20161044 to be consistent with the DWR website and document upload page. This is just a minor formatting update.

Wildlands response; The cover page has been updated.

DMS comment; Executive Summary: The summary notes that the project restored and/or preserved a total of 12,630 linear feet of stream. Table 1 notes 12,621 linear feet. Please update.

Wildlands response; The length has been updated to 12,621 linear feet in the Executive Summary.

DMS comment; Report text & IRT Site Visit Meeting Minutes 8/19/2019: During the August 2019 IRT site visit, the IRT noted a grass that was similar to Johnson grass adjacent to UT1. Please address/discuss in the report text.

Wildlands response; The Johnson grass-like specimen noted during the August 2019 IRT site visit was later identified by Wildlands to be barnyard grass (Echinochloa sp.). We expect this grass will be shaded out over time but will continue to monitor its density and coverage at the Site and treat if it seems to be crowding out floodplain vegetation diversity. Text has been added to section 1.2.2.

DMS comment; During the August 2019 site visit, DMS and the IRT observed that the BMP overflow channel from BMP4 had been eroded by recent storm flow. Based on WEI's assessment, DMS understands that this damaged area is noncredit generating. The meeting minutes indicate that WEI planned to repair this area by the end of September 2019. Please address and update the report text accordingly.

Wildlands response; Wildlands completed a repair to the overflow channel from BMP4 in September 2019. Text has been added to section 1.2.5.

DMS comment; Section 1.2 – Monitoring Year 1 Data Assessment: The report notes that annual monitoring for MY1 was conducted from March 2019-November 2019. Based on Table 2, site planting was not completed until April 2019. DMS recommends updating this to May 2019-November 2019 report wide.

Wildlands response; Wildlands had originally noted the MY1 assessment beginning in March 2019 since that is when the hydrologic gage data collection began. For consistency, the MY1 assessment dates have been updated to May 2019 – November 2019 throughout the report.

DMS comment; Section 1.2.4 – Stream Hydrology Assessment & CCPV Maps: Do the CCPV maps show the October 2019 relocated stream gages on UT2A and UT2B or the MY0-MY1 gage locations? Since these gages were not relocated until October 2019, DMS recommends showing the previous MY0 locations in the MY1 report and updating the mapped locations (and digital support files) in the 2020 - MY2 report. Please address and update the report text accordingly.

Wildlands response; The CCPV maps submitted with the MY1 draft report showed the relocated stream gage locations on UT2A and UT2B. The CCPV maps and digital support files have been updated to show the previous MY0-MY1 stream gage locations on UT2A and UT2B and text has been added to section 1.2.4. Going forward, the MY2 report will show the relocated stream gage locations.

DMS comment; Section 1.2.6 – Wetland Assessment: In the report text, please confirm that the groundwater gage maintenance (GWG 6) and gage calibration was completed as requested/noted in the August 19, 2019 IRT site visit meeting minutes.

Wildlands response; Text has been added to section 1.2.6 to confirm that groundwater gage maintenance and calibration was completed in MY1. The manual water level measurement data points have been added to groundwater gage plots in Appendix 5.

DMS comment; Table 1: In the Project Credits section, the 9.5 WMUs should be placed in the Reestablishment row.

Wildlands response; Table 1 has been updated.

DMS comment; Groundwater gage plots: For clarity, consider adding the consecutive day number for each gage on the groundwater gage plots instead of using the currently shown 19-day bar. The 19-day bar adds some confusion to the plots without a description of what it corresponds too (9.2% of the growing season).

Wildlands response; For clarity, the maximum number of consecutive days achieved by each gage has been added to all groundwater gage plots instead of the 19-day bar.

DMS comment; In-Stream flow gage plots: For clarity, consider reporting the maximum consecutive days achieved for each gage on the individual graph. It would also be helpful to show a start and end line that corresponds with the consecutive days reported. Note that gage #1 has a "30 days" line but the other graphs do not. All gage graphs should be consistent in format.

Wildlands response; For clarity, the maximum number of consecutive days achieved by each gage has been added to all stream gage plots.

DMS comment; Digital Support File Comments: Please provide all required digital support files as specified in the applicable DMS monitoring template. The GIS stream and wetland features for this project were not included in the digital support files. Please provide DMS with GIS features segmented based on the asset table for which linear feet/ acres of the features match the linear feet/ acres reported in the asset table.

Wildlands response; All CCPV GIS data has been added to the support files in the electronic submittal. The stream and wetland GIS features that match the linear feet/acres reported in the asset table are found in the "LH_ALIGNS_CL" and "LH_Wetland_Reest" shapefiles.

Two (2) hard copies of the Final Monitoring Report and a full electronic submittal has been mailed to the DMS western field office. Please contact me at 704-332-7754 x106 if you have any questions.

Sincerely,

elul

Emily Reinicker, PE, CFM Project Manager

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) implemented a full-delivery stream and wetland mitigation project at the Lone Hickory Mitigation Site (Site) for the North Carolina Department of Environmental Quality (DEQ) Division of Mitigation Services (DMS). The project restored and preserved a total of 12,621 linear feet (LF) of perennial and intermittent stream and restored 9.5 acres of riparian wetland in Yadkin County, NC. The Site is located within the DMS targeted watershed for the Yadkin River Basin HUC 03040101130020 and the NC Division of Water Resources (NCDWR) Subbasin 03-07-02. The project is providing 13,164.000 stream mitigation units (SMUs) and 9.500 wetland mitigation units (WMUs) for the Yadkin River Basin Hydrologic Unit Code (HUC) 03040101 (Yadkin 01).

The watershed has a long history of agricultural activity and most of the stressors to stream functions are related to this historic and current land use practices. The major stream stressors for the Site were concentrated agricultural runoff inputs, active stream incision and head cutting, lack of stabilizing streamside vegetation, extensive agricultural manipulation through ditching, and the lack of bedform diversity. The effects of these stressors resulted in degraded water quality and habitat throughout the Site's watershed when compared to reference conditions. The project approach for the Site focused on evaluating the Site's existing functional condition and evaluating its potential for recovery and need for intervention.

The project goals defined in the mitigation plan (Wildlands, 2017) were established with careful consideration of 2009 Upper Yadkin Pee Dee River Basin Restoration Priorities (RBRP) goals and objectives to address stressors identified in the watershed. The established project goals include:

- Improve stream channel stability;
- Reconnect channels with historic floodplains and re-establish wetland hydrology and function in relic wetland areas;
- Improve instream habitat;
- Reduce sediment and nutrient input from adjacent farm fields;
- Restore and enhance native floodplain and wetland vegetation; and
- Permanently protect the project site from harmful uses.

The Site construction and as-built surveys were completed in April 2019. Monitoring Year (MY) 1 assessments and site visits were completed between April and November 2019 to assess the conditions of the project.

Overall, the Site has met the required stream, vegetation, and hydrology success criteria for MY1. The overall average planted stem density for the Site is 491 stems per acre and is on track to meet the MY3 requirement of 320 stems per acre. Geomorphic surveys indicate that cross-section bankfull dimensions closely match the baseline monitoring, and streams are functioning as intended. At least one bankfull event was documented on UT3 Reach 3 and UT2B since the completion of construction. All nine gages that were initially installed at baseline in the wetland re-establishment area are meeting or exceeding hydrology success criteria. The MY1 visual assessment identified a few areas of concern including populations of invasive plant species and an isolated area of bed and bank scour. Wildlands will continue to monitor these areas, and an adaptive management plan will be implemented as necessary throughout the seven-year monitoring period to benefit the ecological health of the Site.

LONE HICKORY MITIGATION SITE

Monitoring Year 1 Annual Report

TABLE OF CO	ONTENTS	
Section 1:	PROJECT OVERVIEW	1-1
1.1 Pr	oject Goals and Objectives	1-1
1.2 M	onitoring Year 1 Data Assessment	1-2
1.2.1	Vegetation Assessment	1-2
1.2.2	Vegetation Areas of Concern and Management Activity	1-3
1.2.3	Stream Assessment	1-3
1.2.4	Stream Hydrology Assessment	1-4
1.2.5	Stream Areas of Concern	1-4
1.2.6	Wetland Assessment	1-4
1.3 M	onitoring Year 1 Summary	1-5
Section 2:	METHODOLOGY	2-6
Section 3:	REFERENCES	3-1

APPENDICES

Appendix 1	General Figures and Tables
Figure 1	Project Vicinity Map
Figure 2	Project Component/Asset Map
Table 1	Mitigation Assets and Components

- Table 2Project Activity and Reporting History
- Table 3Project Contacts Table
- Table 4Project Information and Attributes
- Table 5a 5bMonitoring Component Summary
 - IRT Site Visit Meeting Minutes 8/19/2019

Appendix 2 Visual Assessment Data

Figure 3.0 – 3.5	Integrated Current Condition Plan View Maps (Key – Sheet 5)
Table 6a – 6k	Visual Stream Morphology Stability Assessment Table
Table 7	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs

Appendix 3 Vegetation Plot Data

Table 8a – 8b	Vegetation Plot Criteria Attainment
Table 9	CVS Permanent Vegetation Plot Metadata
Table 10a – 10d	Planted and Total Stems

Appendix 4 Morphological Summary Data and Plots

- Table 11a 11c Baseline Stream Data Summary
- Table 11d Reference Reach Data Summary
- Table 12a 12c Morphology and Hydraulic Summary (Dimensional Parameters Cross-Section)

Table 13a – 13kMonitoring Data – Stream Reach Data Summary
Cross-Section Plots
Reachwide Pebble Count Plots

Appendix 5 Hydrology Summary Data and Plots

- Table 14 Verification of Bankfull Events
- Table 15Wetland Gage Attainment Summary
Groundwater Gage Plots

Stream Gage Plots Monthly Rainfall Data

Section 1: PROJECT OVERVIEW

The Lone Hickory Mitigation Site (Site) is located in Yadkin County approximately 3.5 miles south of the town of Yadkinville, NC in the Yadkin River Basin HUC 03040101130020 and NCDWR Subbasin 03-07-02 (Figure 1). Located in the Inner Piedmont lithotectonic belt within the Piedmont physiographic province (NCGS, 1985), the project watershed is dominated by agricultural and forested land.

The Site contains two valleys, separated by a ridge that runs north to south through the project limits. South Deep Creek flows along the northern boundary of the project. On the east side of the ridge (herein referenced as the East Side), UT1 flows through a steep, narrow valley that gradually widens and flattens in slope as it flows downstream to the South Deep Creek floodplain. UT1 is joined by UT1A and UT1B within the Site limits before flowing offsite to join South Deep Creek. On the west side of the ridge (herein referenced as the West Side), UT2 and UT3 flow out of steep, narrow valleys into the broad, flat floodplain of South Deep Creek. UT2A and UT2B join UT2 before the stream's confluence with South Deep Creek. The East Side of the Site drains 0.44 square miles and the West Side of the Site drains 0.87 square miles of rural land.

Prior to construction activities, the Site has a history of use for both crop production and as a dairy farm resulting in degraded in-stream habitat and sediment erosion. Within the East Side of the Site, the streams were manipulated through ditching, impoundments, and land use changes. The West Side streams were ditched and re-routed with the adjacent floodplain previously altered for agricultural uses. The riparian buffers on both sides exhibited a lack of stabilizing streamside vegetation due to agricultural practices. Tables 11a – 11d in Appendix 4 present the pre-restoration conditions in detail.

Construction activities were completed in April 2019 by KBS Earthworks, Inc. Turner Land Surveying, PLLC. completed the as-built survey in April 2019. Planting was completed following construction in the spring of 2019 by Bruton Natural Systems, Inc. A conservation easement has been recorded and is in place on 103 acres. The project is providing 13,164.000 SMUs and 9.500 WMUs for the Yadkin River Basin 03040101 HUC (Yadkin 01). Annual monitoring will be conducted for seven years with close-out anticipated to commence in 2026 given the success criteria are met.

Directions and a map of the Site are provided in Figure 1 and project components are illustrated for the Site in Figure 2.

1.1 Project Goals and Objectives

The Site is providing numerous ecological benefits within the Yadkin Valley Basin. The project goals were established with careful consideration to address stressors that were identified in the NCDWR 2008 Yadkin River Basinwide Plan (NCDWR, 2008) and the RBRP (EEP, 2009).

The following project specific goals and objectives outlined in the mitigation plan (Wildlands, 2017) include:

Goals	Objectives
Improve stream channel stability.	Restore stream channels that will maintain a stable pattern and profile considering the hydrologic and sediment inputs to the system, the landscape setting, and the watershed conditions. Create stable tie-ins for tributaries joining restored channels. Add bank revetments and in-stream structures to protect restored streams.
Reconnect channels with historic floodplains and re-establish wetland hydrology and function in relic wetland areas.	Remove man-made impoundments, remove culvert crossings, and restore historic valley profile. Remove historic overburden from farm fields. Reconstruct stream channels with bankfull dimensions relative to the floodplain. Restore stream plan form to promote development of mutually beneficial stream/wetland complex.
Improve instream habitat.	Remove man-made impoundments and culvert crossings within easement. Install habitat features such as constructed riffles, cover logs, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct pools of varying depth.
Reduce sediment and nutrient input from adjacent farm fields.	Construct two step pool stormwater conveyance and three dry detention BMPs to slow and treat runoff from farm fields before entering Site streams.
Restore and enhance native floodplain and wetland vegetation.	Plant native tree and understory species in riparian zone where currently insufficient.
Permanently protect the project site from harmful uses.	Establish a conservation easement on the Site.

1.2 Monitoring Year 1 Data Assessment

Annual monitoring was conducted during MY1 (May to November 2019) to assess the condition of the project. The stream, vegetation, and hydrologic success criteria for the Site follows the approved success criteria presented in the Lone Hickory Mitigation Plan (Wildlands, 2017).

1.2.1 Vegetation Assessment

Vegetation plot monitoring is being conducted in post-construction monitoring years 1, 2, 3, 5, and 7. Permanent plots are monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008) and the 2016 USACE Stream and Wetland Mitigation Guidance to assess the vegetation success. A total of 25 permanent vegetation plots were established within the project easement area. All of the permanent plots were established as a standard 10 meter by 10 meter square plot. In addition, 15 mobile vegetation plots were established in monitoring year 1 throughout the planted conservation easement to evaluate the random vegetation performance for the Site. These plots will be subsequently reestablished in different random locations in monitoring years 2, 3, 5 and 7. Mobile vegetation monitoring plot assessments will document stems, species, and height using a circular or 100 meter square/rectangular plot. The final vegetative performance standard will be the survival of 210 planted stems per acre in the planted riparian areas at the end of the required seven-year monitoring period. The interim measure of vegetative success for the Site will be the survival of at least 320 planted stems per acre at the end of MY3 and at least 260 stems per acre at the end of MY5.

The MY1 vegetation survey was completed in October 2019, resulting in an average planted stem density of 491 stems per acre for all monitored permanent and mobile vegetation plots. The Site is on track to meet the MY3 density requirement of 320 planted stems per acre with all (25) of the permanent plots individually on track to meet this requirement. For the mobile vegetation plots, 11 of the 15 plots are individually on track to meet the interim MY3 density requirement. Three of the four mobile plots not meeting the MY3 density requirement were located within the west side of the Site in areas where dense herbaceous cover is competing with planted stems.

Approximately 74% of the planted stems in permanent plots are thriving with a health score (vigor) of 3 or greater. However, about 10% of the stems have a vigor of 2 or less indicating that some may not survive next year and 3% of the stems were missing. The poor tree health is a result of suffocation from dense herbaceous cover, insects, deer, or other unknown factors. This leaves a mortality rate of about 13% of the baseline planted stem count in permanent vegetation plots. Furthermore, tulip poplars (*Liriodendron tulipifera*) and swamp chestnut oaks (*Quercus michauxii*) were the planted tree species with the highest mortality rates in MY1. Please refer to Appendix 2 for permanent vegetation plot photographs, Figures 3.0-3.5 for vegetation plot locations, and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern and Management Activity

MY1 visual assessments indicate that some invasive plant populations are present within the conservation easement. These species include: kudzu (*Pueraria montana*), Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), tree of heaven (*Ailanthus altissima*), and Asian spiderwort (*Murdannia keisak*). In MY1, adaptive management occurred in September and October of 2019 by Wildlands staff. Primary focus areas for treatment included populations of kudzu re-sprouts within the Site near UT2, UT3, and UT3A that were previously treated prior to construction. In addition, aquatic invasive plant species including Asian spiderwort were treated within UT1. During the August 2019 IRT site visit, a grass noted to be similar to Johnson grass adjacent to UT1 was later identified by Wildlands to be barnyard grass (*Echinochloa sp.*). It is expected that this grass will be shaded out over time. Along UT3, small areas of the floodplain were re-seeded to promote stronger herbaceous cover. These vegetation areas of concern will continue to be monitored and addressed by Wildlands throughout the monitoring period. Current vegetation areas of concern are shown in Current Condition Plan View (CCPV) Figures 3.0-3.5 in Appendix 2.

1.2.3 Stream Assessment

Riffle cross-sections on the restoration and enhancement I reaches should be stable and show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Per the Interagency Review Team (IRT) guidance, bank height ratios shall not exceed 1.2 and entrenchment ratios shall be at least 1.4 for restored B channels and 2.2 for restored C channels to be considered stable. All riffle cross-sections should fall within the parameters defined for channels of the appropriate stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing

signs of instability. Indicators of instability include trends in vertical incision or bank erosion. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability. Please note that the downstream extent of UT3 Reach 3 was designed to deepen relative to its floodplain as it transitions to meet the invert of South Deep Creek, and this reach is expected to have a bank height ratio greater than 1.0 and an entrenchment ratio less than 2.2.

Morphological surveys for MY1 were conducted during October 2019. Cross-section survey results indicate that channel dimensions are stable and functioning as designed on all restoration reaches with minimal adjustments. Some in-stream vegetation is visible within the channel along UT1, UT2, UT2A, and UT2B but has not adversely affected stream form or function with little change in bankfull dimensions in comparison to the baseline survey. In future years, as woody stems become more established in-stream vegetation is expected to be shaded out and diminish.

Reachwide pebble counts along all restoration reaches indicate maintenance of coarser materials in riffle features and finer particles in the pool features. Refer to Appendix 2 for the visual stability assessment tables, CCPV maps, and reference photographs. Refer to Appendix 4 for the morphological tables and plots.

1.2.4 Stream Hydrology Assessment

At the end of the seven-year monitoring period, four or more bankfull flow events must have occurred in separate years within the restoration reaches. In MY1, at least one bankfull event was recorded on two of the stream restoration reaches (UT3 Reach 3, and UT2B).

Consistent flow must be documented in the restored intermittent channels (UT1 Reach 1, UT2A, and UT2B) at the Site. Under periods of normal rainfall, stream flow must be documented to occur every year for at least 30 consecutive days during the seven-year monitoring period. On UT1 Reach 1 and UT2A, 209 and 64 consecutive days were documented respectively in MY1 indicating that these two reaches exceeded success criteria for intermittent channels. UT2B did not meet the success criteria for this initial monitoring year with 23 consecutive days of stream flow documented in MY1. Per the IRT recommendations following the site walk on August 19, 2019, the stream gages on UT2A and UT2B were relocated upstream above mid-reach on these intermittent channels on October 25, 2019. The CCPV maps in Appendix 2 show the original locations of the stream gages on UT2A and UT2B. Please refer to Appendix 5 for hydrology summary data and plots.

1.2.5 Stream Areas of Concern

MY1 visual assessments indicate that very few stream areas of concern exist on the Site, and project streams are functioning as designed. Along UT3 Reach 1, one isolated area of bank scour and bed degradation was observed along the riffle at station 304+20. After construction, storm flow caused scour along the outflow channel from BMP4. A repair was completed in September 2019 to stabilize the outflow channel from BMP4 above the start of UT2B. Wildlands will continue to monitor stream areas of concern for accelerated instability and will be addressed as needed throughout the monitoring period. Please refer to Appendix 2 for current CCPV Figures 3.0-3.5 and stream stability tables.

1.2.6 Wetland Assessment

Nine groundwater monitoring gages (GWGs) were initially installed during baseline monitoring within the wetland re-establishment area using In-situ Level TROLL® 100 pressure transducers. Following recommendations from the August 19, 2019 IRT site walk, an additional gage (GWG 10) was installed adjacent to GWG 4 but outside of the former ditch location at the end of October 2019. A reference

gage was established in a nearby reference wetland and will be utilized to compare the hydrologic response within the restored wetland areas at the Site. All monitoring gages are downloaded on a quarterly basis and maintained as needed. As requested during the August 19, 2019 IRT site walk, the filter sock on GWG 6 was trimmed and bentonite was added to gages as needed. Calibration was completed by manually measuring water levels on all gages which confirmed the downloaded data. The final performance standard for wetland hydrology is the presence of groundwater within 12 inches of the ground surface for 19 consecutive days (9.2%) of the defined growing season for Yadkin County (April 4 through October 27) under typical precipitation conditions. The Site does not contain a rainfall gage; therefore, the daily precipitation data was collected from closest NC Climate Retrieval and Observations Network of the Southeast Database (NC CRONOS) Station, Yadkinville 0.2 E, NC.

Of the nine GWGs that were installed during baseline monitoring, all met or exceeded the success criteria for MY1 and ranged from 11.1% to 52.7% of the growing season. Monthly rainfall data in 2019 indicated higher than normal rainfall amounts occurred during the months of February, June, and October and lower than normal rainfall amounts occurred during March, July, and September 2019. Please refer to Figures 3.0-3.5 in Appendix 2 for the groundwater gage locations and Appendix 5 for hydrology data and plots.

As discussed at the beginning of this section, GWG 10 was installed at the end of the growing season in 2019. The reporting of monitoring data for GWG 10 will begin in MY2 and GWG 4 will be omitted in future monitoring reports.

1.3 Monitoring Year 1 Summary

Overall, the Site has met the required stream, vegetation, and hydrology success criteria for MY1. The overall average planted stem density for the Site is 491 stems per acre and is on track to meet the MY3 requirement of 320 stems per acre. Geomorphic surveys indicate that cross-section bankfull dimensions closely match the baseline monitoring, and streams are functioning as intended. At least one bankfull event was documented on UT3 Reach 3 and UT2B since the completion of construction. All nine gages that were initially installed at baseline in the wetland re-establishment area are meeting or exceeding hydrology success criteria. The MY1 visual assessment identified a few areas of concern including populations of invasive plant species and an isolated area of bed and bank scour. Wildlands will continue to monitor these areas, and an adaptive management plan will be implemented as necessary throughout the seven-year monitoring period to benefit the ecological health of the Site.

Section 2: METHODOLOGY

Geomorphic data were collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Stream gages were installed in riffles and monitored quarterly. Hydrologic monitoring instrument installation and monitoring methods are in accordance with the United States Army Corps of Engineers (USACE, 2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008).

Section 3: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Ecosystem Enhancement Program (EEP), February 2009. Upper Yadkin Pee-Dee River Basin Restoration Priorities.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- North Carolina Climate Retrieval and Observations Network of the Southeast Database (NCCRONOS). 2019. State Climate Office of North Carolina. Version 2.7.2. Station ID Yadkinville 0.2 E, NC. Accessed October 2019.
- North Carolina Division of Water Resources (NCDWR), 2015. Surface Water Classifications. http://portal.ncdenr.org/web/wq/ps/csu/classifications
- North Carolina Division of Mitigation Services (DMS), April 2015. DMS Annual Monitoring and Closeout Reporting Template.
- North Carolina Division of Mitigation Services (DMS), October 2015. DMS Stream and Wetland Mitigation Plan Template and Guidance.
- North Carolina Division of Mitigation Services and Interagency Review Team Technical Workgroup. 2018. Standard Measurement of the BHR Monitoring Parameter. Raleigh, NC.
- North Carolina Geological Survey (NCGS), 1985. Geologic Map of North Carolina: North Carolina Survey, General Geologic Map, scale 1:500,000. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/north-carolina-geological-survey/ncgs-maps/1985-geologic-map-of-nc4
- Rosgen, D. L. 1994. A classification of natural rivers. *Catena* 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE), October 2016. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- Wildlands Engineering, Inc (Wildlands), 2017. Lone Hickory Mitigation Site Mitigation Plan. DMS, Raleigh, NC.

APPENDIX 1. General Figures and Tables

Yadkin County, NC

Monitoring Year 1 - 2019

0

350 700 Feet

Ŵ

Figure 2 Project Component/Asset Map Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Table 1. Mitigation Assets and ComponentsLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

	Project Components											
Project Area/Reach	Reach Existing Footage Mitigation Plan (LF) or Acreage Acreage Acreage		Mitigation Category	Restoration Level	Priority Level	Mitigation Ratio (X:1)	As-Built Footage/ Acreage	Project Credit ¹²				
UT1, R1, R2a, R2b, R3	6,015	5,721	Warm	Restoration	P1, P2	1.000	5,721	6,698.000				
UT1 R4	659	659	Warm	Preservation	P4	10.000	659	66.000				
UT1A	230	282	Warm	Preservation	N/A	10.000	282	28.000				
UT1B	48	124	Warm	Preservation	N/A	10.000	123	12.000				
UT2 R1, R2	2,527	1,703	Warm	Restoration	P1, P2	1.000	1,703	1,933.000				
UT2A	1,184	655	Warm	Restoration	P1	1.000	655	699.000				
UT2B	699	784	Warm	Restoration	P1, P2	1.000	776	893.000				
UT3 R1, R2, R3	2,008	2,702	Warm	Restoration	P1, P2	1.000	2,702	2,835.000				
West Side Wetlands	N/A	9.5	Warm	Re-establishment		1.000	9.5	9.500				

Project Credits											
Destantion Louis		Stream		Riparian W	etland	Non-Riparian	Constal Marsh				
Restoration Level	Warm	Cool	Cold	Riverine	Non-Riv	Wetland	Coastal Warsh				
Restoration	13,058.000	N/A	N/A	N/A	N/A	N/A	N/A				
Re-establishment				9.500	N/A	N/A	N/A				
Rehabilitation				N/A	N/A	N/A	N/A				
Enhancement				N/A	N/A	N/A	N/A				
Enhancement I	N/A	N/A	N/A								
Enhancement II	N/A	N/A	N/A								
Creation				N/A	N/A	N/A	N/A				
Preservation	106.000	N/A	N/A	N/A	N/A	N/A					
Totals	13,164.000	N/A	N/A	N/A	N/A	N/A	N/A				

Notes:

1. No direct credit for BMPs.

2. Credits reported have been adjusted based on buffer width deviations from standard 50-foot buffer width.

Table 2. Project Activity and Reporting History

Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 1 - 2019

Activity or Report		Data Collection Complete	Completion or Delivery		
404 Permit		April 2018	April 2018		
Mitigation Plan		July - December 2016	December 2017		
Final Design - Construction Plans		June 2018	June 2018		
Construction		Oct 2018 - April 2019	Oct 2018 - April 2019		
Temporary S&E mix applied to entire project area ¹		Oct 2018 - April 2019	Oct 2018 - April 2019		
Permanent seed mix applied to reach/segments		Oct 2018 - April 2019	Oct 2018 - April 2019		
Bare root and live stake plantings for reach/segme	nts	February 2019 - April 2019	April 2019		
Baseline Monitoring Document (Year 0)		February 2019 - May 2019	June 2019		
Invasive Species Treatment		September 2019 - October 2019	October 2019		
Supplemental seeding applied to UT3 floodplain		September 2019 - October 2019	October 2019		
	Stream Survey	October 2019	N 1 2010		
Year 1 Monitoring	Vegetation Survey	October 2019	November 2019		
Voor 2 Monitoring	Stream Survey	2020	Nevershar 2020		
fear 2 Monitoring	Vegetation Survey	2020	November 2020		
Voor 2 Monitoring	Stream Survey	2021	Nevember 2021		
real 5 Wolltoning	Vegetation Survey	2021	November 2021		
Voor 4 Monitoring	Stream Survey	2022	November 2022		
fear 4 Monitoring	Vegetation Survey	2022	November 2022		
Year E Monitoring	Stream Survey	2023	Nevember 2022		
fear 5 Monitoring	Vegetation Survey	2023	November 2023		
Voor 6 Monitoring	Stream Survey	2024	November 2024		
fear 6 Monitoring	Vegetation Survey	2024	November 2024		
Voor 7 Monitoring	Stream Survey	2025	November 2025		
	Vegetation Survey	2025	November 2025		

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Designers	Wildlands Engineering, Inc.
Emily Reinicker, PE, CFM	1430 South Mint Street, Suite 104
	Charlotte, NC 28203
	704.332.7754
Construction Contractors	KBS Earthworks, Inc.
	5616 Coble Church Road
	Julian, NC 27283
Planting Contractor	Bruton Natural Systems, Inc.
	PO Box 1197
	Freemont, NC 27830
Seeding Contractor	KBS Earthworks, Inc.
Seed Mix Sources	KBS Earthworks, Inc.
Nursery Stock Suppliers	
Bare Roots	Bruton Notural Systems Inc.
Live Stakes	Bruton Natural Systems, inc.
Herbaceous Plugs	
Monitoring Performers	Wildlands Engineering, Inc.
	Kristi Suggs 704.332.7754

Table 4. Project Information and Attributes

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Project Information													
Breigt Name	Lone Hickory	/ Mitigation Sit	e										
	Yadkin Coun	ty											
Project Area (acres)	103.000												
Project Coordinates (latitude and longitude)	36° 5' 39.16'	36° 5' 39.16"N 80° 40' 2.14"W											
Planted Acreage (Acre of Woody Stems Planted)	99.000												
Project Watershed Summary Information													
Physiographic Province	Piedmont Ph	Pedmont Physiographic Province											
River Basin	Yadkin River	adkin River											
USGS Hydrologic Unit 8-digit	03040101												
USGS Hydrologic Unit 14-digit	0304010113	0020											
DWR Sub-basin	03-07-02												
Project Drainage Area (acres)	286 (East Sid	le), 170 (UT2 -	West Side), 3	392 (UT3 – W	est Side)								
Project Drainage Area Percentage of Impervious Area	3% (UT1 - Ea	st Side), 1% (U	T2 – West Si	de), 2% (UT3 ·	– West Side)								
	UT1 - East Si	de: Forest (399	%), Cultivated	d (42%), Grass	land (4%), Shr	ubland (7%), I	Urban (8%), Open W	ater (0%)					
2011 NLCD Land Use Classification	UT2 - West S	de: Forest (31	%), Cultivate	ed (40%), Gras	sland (9%), Sh	rubland (10%), Urban (0%), Open	Water (10%)					
	UT3 - West S	ide: Forest (57	%). Cultivate	ed (22%). Gras	sland (5%). Sh	, rubland (10%). Urban (3%). Open	Water (3%)					
			Rea	ich Summa	rv Informat	on	<u> </u>						
		U.	T1		ſ		L L	JT2	1			UT3	
Parameters	R1	R2A/R2B	R3	R4	UT1A	UT1B	R1	R2	UT2A	UT2B	R1	R2	R3
Length of reach (linear feet) - Post-Restoration	966	3.114	1.641	659	282	123	623	1.080	655	776	779	1.159	764
Valley confinement (Confined, moderately confined, unconfined)	Confined	Confined	to moderate	ly confined	Confined	Confined	Moderately conf	ined to unconfined	Unconfined	Unconfined	Moderatel	y confined to	unconfined
Drainage area (acres)		28	36	,	92	31	, 1	.70	27	6	392		
Perennial, Intermittent, Ephemeral	I/P	Р	Р	Р	P	P		P I/P P P					
NCDWR Water Quality Classification	í í	WS	-111		WS-III	WS-III	W	S-III	WS-III	WS-III		WS-III	
Morphological Description (stream type) - Pre-Restoration		G, Straigth	nened E/G		-	-	G	G	G	G	G	G	G
Morphological Description (stream type) - Post-Restoration	Α	В	С	-	-	-	В	С	С	C/Cb	Bc	С	С
Evolutionary trend (Simon's Model) - Pre- Restoration		III/I	v/v		VI	VI	III/	IV/V	III/IV/V	IV/V		IV/V	
FEMA classification	Last 400LF	in Zone AE bad	kwater from	South Deep	None	None		Zone A	E backwater fr	rom South Dee	p Creek		
			Wet	land Summ	ary Informa	tion							
Parameters							West Side Wet	lands					
Size of Wetland (acres)	9.5												
Wetland Type	Riparian Rive	erine											
Mapped Soil Series	Codorus loar	m/Dan River ar	nd Comus so	ils									
Drainage class	Somewhat p	oorly drainage	/well draine	d									
Soil Hydric Status	Yes/No												
Source of Hydrology	Groundwate	r											
Restoration or enhancement method (hydrologic, vegetative etc.)	Re-establish	ment											
			Re	egulatory C	onsideratio	15							
Regulation		Applicable?			R	esolved?			Sup	porting Docu	mentation		
Waters of the United States - Section 404		Yes				Yes		USACE Nationwid	le Permit No.2	7 and DWQ 40:	L Water Quali	ty Certificatio	n No. 4134.
Waters of the United States - Section 401		Yes				Yes		1	USACE	Action ID #SAV	V-2017-00100	- 	
Division of Land Quality (Erosion and Sediment Control)		Yes				Yes		NPDE	S Construction	n Stormwater G	eneral Permit	NCG010000	
Endangered Species Act		Yes				Yes			Categorical Ex	clusion Docum	ent in Mitigat	on Plan	
Historic Preservation Act		Yes		1		Yes			Categorical Ex	clusion Docume	ent in Mitigat	on Plan	
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)		No		1		N/A			-	N/A			
FEMA Floodplain Compliance		Yes				Yes		Yac	dkin County Flo	oodplain Develo	opment Perm	it #2017-4.	
Essential Fisheries Habitat		No				N/A				N/A			

Table 5a. Monitoring Component SummaryLone Hickory Mitigation Site

DMS Project No. 97135 Monitoring Year 1 - 2019

East Side

			Q	uantity / Le							
Parameter	Monitoring Feature	UT1 Reach	UT1	UT1	UT1 Reach			Frequency	Notes		
		1	Reach 2	Reach 3	4	UTIA	UIIB				
Dimension	Riffle Cross-Section	1	4	2	N/A	N/A	N/A	Vear 1 2 3 5 and 7	1		
Dimension	Pool Cross-Section	1	3	2	N/A	N/A	N/A	rear 1, 2, 3, 5, and 7	1		
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2		
Profile	Longitudinal Profile	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2		
Culturate	Reach Wide (RW)	1 RW	1 RW	W 1 RW	NI / A	NI / A		Year 1, 2, 3, 5, and 7	2		
Substrate	Pebble Count				N/A	N/A	N/A		3		
Us adverte en c	Crest Gage (CG) and	1.50	1.00		100 8		1 CG & SG			Comi Annual	4
Hydrology	or/Transducer (SG)	1 30	100	100 0 30				Semi-Annual	4		
	CVS Level 2/Mobile		1	E (10 porma		Veer 1 2 2 5 and 7	r.				
vegetation	plots		1	5 (10 perma	nent, 5 mobile	=)		redi 1, 2, 3, 5, dilu /	5		
Visual Assessment			Yes								
Exotic and Nuisance Vegetation					Semi-Annual	6					
Project Boundary					Semi-Annual	7					
Reference Photos	Photographs				22			Annual			

Notes:

1. Cross-sections were permanently marked with rebar to establish location. Surveys include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg.

2. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile was collected during as-built baseline monitoring survey only, unless observations indicate widespread lack of vertical stability (greater than 10% of reach is affected) and profile survey is warranted in additional years to monitor adjustments or survey repair work.

3. Riffle 100-count substrate sampling were collected during the baseline monitoring only.

4. Crest gages and/or transducers will be inspected quarterly or semi-annually, evidence of bankfull events will be documented with a photo when possible. Transducers, if used, will be set to record stage once every 2 hours. The transducer will be inspected and downloaded semi-annually. A transducer was installed on the intermittent portion of UT1 Reach 1 to document 30 days of continuous flow.

5. Permanent vegetation monitoring plot assessments will follow CVS Level 2 protocols. Mobile vegetation monitoring plot assessments will document number of planted stems, height, and species using a circular or 100 m2 square/rectangular plot. 2% of the non-shaded planted acreage will be monitored with permanent plots within the 50' stream buffer, and 1% of the non-shaded planted acreage will be monitored with mobile plots beyond the 50' stream buffer. Planted shaded areas will be visually assessed.

6. Locations of exotic and nuisance vegetation will be mapped.

7. Locations of vegetation damage, boundary encroachments, etc. will be mapped.

Table 5b. Monitoring Component Summary

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

West Side

Parameter	Monitoring Feature	UT2	UT2 Reach	11724	11730	UT3 Reach	UT3 Reach	UT3 Reach	Wetland Re-	Frequency	Notes
		Reach 1	2	UIZA	0126	1	2	3	establishment		
Dimension	Riffle Cross-Section	1	2	2	2.000	1	1	1	N/A	Vear 1 2 3 5 and 7	1
Dimension	Pool Cross-Section	1	1	2	2.000	1	1	1	N/A	Tear 1, 2, 3, 5, and 7	I
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2
Profile	Longitudinal Profile	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2
Substrate	Reach Wide (RW) Pebble Count	1 RW	1 RW	1 RW	1 RW	1 RW	1 RW	1 RW	N/A	Year 1, 2, 3, 5, and 7	3
Stream Hydrology	Crest Gage (CG) and/or Transducer (SG)	1 CG	i & SG	1 CG & SG	1 CG & SG		1 CG & SG		Semi-Annual	4	
Wetland Hydrology	Groundwater Gages								9	Quarterly	
Vegetation	CVS Level 2/Mobile Plots				25 (15 per	manent, 10 m	obile)			Year 1, 2, 3, 5, and 7	5
Visual Assessment						Yes				Semi-Annual	
Exotic and Nuisance										Semi-Annual	6
Vegetation										Jenn-Annual	0
Project Boundary										Semi-Annual	7
Reference Photos	Photographs					22				Annual	

Notes:

1. Cross-sections were permanently marked with rebar to establish location. Surveys include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg.

2. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile was collected during as-built baseline monitoring survey only, unless observations indicate widespread lack of vertical stability (greater than 10% of reach is affected) and profile survey is warranted in additional years to monitor adjustments or survey repair work.

3. Riffle 100-count substrate sampling was collected during the baseline monitoring only.

4. Crest gages and/or transducers will be inspected quarterly or semi-annually, evidence of bankfull events will be documented with a photo when possible. Transducers, if used, will be set to record stage once every 2 hours. The transducer will be inspected and downloaded semi-annually. A transducer was installed on the intermittent portion of UT2A and UT2B to document 30 days of continuous flow.

5. Permanent vegetation monitoring plot assessments will follow CVS Level 2 protocols. Mobile vegetation monitoring plot assessments will document number of planted stems, height, and species using a circular or 100 m2 square/rectangular plot. 2% of the non-shaded planted acreage will be monitored with permanent plots within the 50' stream buffer, and 1% of the non-shaded planted acreage will be monitored with mobile plots beyond the 50' stream buffer. Planted shaded areas will be visually assessed.

6. Locations of exotic and nuisance vegetation will be mapped.

7. Locations of vegetation damage, boundary encroachments, etc. will be mapped.

PROJECT:	Lone Hickory, Yadkin County, NC
DATE:	August, 19 2019; 10:30 AM
LOCATION:	Lone Hickory, Yadkinville, NC

Sign In

Company	Name
Wildlands	Shawn Wilkerson
Wildlands	Ben McGuire
NCDMS	Paul Wiesner
NCDMS	Kelly Phillips
DWR	Mac Haupt
USACE	Todd Tugwell

- 1. Livestakes used onsite: Silky Dogwood 40%, Silky Willow 50%, Black Willow 10%
- 2. Wildlands Land Management team to identify and address:
 - a. Vegetation in UT1 stream channel 112+50 117+00.
 - b. Along UT1 from 113+00-160+00 a grass that looks similar to Johnson Grass is growing throughout..
 - c. A couple of kudzu sprouts were noted on a point bar of the West Side of UT3 around station 305+00.
- UT2B Stream jurisdiction begins at the end of the overflow channel from BMP4. A short portion of this overflow channel (upstream of stream resource) has been eroded by BMP outlflow. The area with damage is not receiving credits.
 - a. The outlet area and overflow channel will be repaired by the end of September.
- 4. Ground water gauges:
 - a. GWG4 is loose. It is also installed over the filled ditch line. Add an additional ground water gauge adjacent to GWG4 but outside of the ditch.
 - b. The sediment sock on GWG6 is above the ground level.
 - c. Make sure the monitoring team is calibrating the gauges, provide manual measure-down to compare to data download.

General IRT notes for the future:

-Remove Green Ash from future planting plans.

-Stream gauges are to be installed no farther than midway down reaches.

Emily Reinicker

From:	Tugwell, Todd J CIV USARMY CESAW (US) <todd.j.tugwell@usace.army.mil></todd.j.tugwell@usace.army.mil>
Sent:	Wednesday, September 4, 2019 9:45 AM
То:	Haupt, Mac; Wiesner, Paul; Browning, Kimberly D CIV USARMY CESAW (US)
Cc:	Phillips, Kelly D; Ben McGuire; Shawn Wilkerson; Emily Reinicker; Kristi Suggs
Subject:	RE: Lone Hickory_DMS# 97135: As-Built/ MY0 IRT Site Visit (8-19-19) Meeting Minutes

Follow Up Flag:	Follow up
Flag Status:	Flagged

Paul, I agree with Mac. I did note that both UT2A&B were both dry. UT2A did have water in the pools on the steeper section, but it had vegetation growing within the bed in the wetland area.

Todd

-----Original Message-----

From: Haupt, Mac [mailto:mac.haupt@ncdenr.gov]

Sent: Friday, August 30, 2019 2:23 PM

To: Wiesner, Paul <paul.wiesner@ncdenr.gov>; Tugwell, Todd J CIV USARMY CESAW (US)

<Todd.J.Tugwell@usace.army.mil>; Browning, Kimberly D CIV USARMY CESAW (US)

<Kimberly.D.Browning@usace.army.mil>

Cc: Phillips, Kelly D <Kelly.Phillips@ncdenr.gov>; Ben McGuire <bmcguire@wildlandseng.com>; Shawn Wilkerson <swilkerson@wildlandseng.com>; Emily Reinicker <ereinicker@wildlandseng.com>; Kristi Suggs <ksuggs@wildlandseng.com>

Subject: [Non-DoD Source] RE: Lone Hickory_DMS# 97135: As-Built/ MYO IRT Site Visit (8-19-19) Meeting Minutes

Paul,

I would add two items:

I was concerned with the placement of both stream gauges on reaches UT2B and UT2A (as you recall, one of my comments on the draft mit plan was that stream gauges were to be placed no farther than midway down the reach). I would either like the gauges moved or add a camera at the recommended locations:

1. For reach UT2B- as seen on record drawings sheet 1.23, on the riffle between topo elevation lines 764 and 763, and

2. For reach UT2A, as seen on record drawings sheet 1.20, on the riffle just above station 402+00.

Thanks,

Mac

APPENDIX 2. Visual Assessment Data

800 Feet

400

DMS Project No. 97135 Monitoring Year 1 - 2019

Ŵ

WILDLANDS

Figure 3.3 Integrated Current Condition Plan View Map (Sheet 3) Lone Hickory Mitigation Site DMS Project No. 97135 N Monitoring Year 1 - 2019

Figure 3.4 Integrated Current Condition Plan View Map (Sheet 4) Lone Hickory Mitigation Site DMS Project No. 97135 Nonitoring Year 1 - 2019

Figure 3.5 Integrated Current Condition Plan View Map (Sheet 5) Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Table 6a. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT1 Reach 1 (STA 101+39 to 111+05)

Assessed Length: 966

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%	1		
	2. Riffle Condition	Texture/Substrate	1	1			100%	I		
	3. Meander Pool	Depth Sufficient	0	0						
1. Bed	Condition	Length Appropriate	0	0	Reach consist	s of a log-rock	N/A			
	4 Thehuag Desition	Thalweg centering at upstream of meander bend (Run)	0	0	cascad	le riffle	N/A			
	4. Thatweg Position	Thalweg centering at downstream of meander bend (Glide)	0	0			N/A			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	n/a	n/a			n/a			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	n/a	n/a			n/a			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	n/a	n/a			n/a			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	n/a	n/a			n/a			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	n/a	n/a			n/a			

Table 6b. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT1 Reach 2A (STA 111+05 to 128+51)

Assessed Length: 1,746

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	35	35			100%			
	2 Stop Pool Condition	Depth Sufficient	35	35			100%			
1. Bed	S. Step Pool Condition	Length Appropriate	N/A	N/A			N/A			
	4. Theleway Desition	Thalweg centering at upstream of meander bend (Run)	N/A	N/A			N/A			
	4. Thatweg Position	Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			N/A			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	1		0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	36	36			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	35	35			100%			
3. Engineered Structures ¹	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	35	35			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	36	36			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	36	36			100%			

Table 6c. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT1 Reach 2B (STA 128+51 to 142+19)

Assessed Length: 1,368

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	20	20			100%			
	3. Meander Pool	Depth Sufficient	20	20			100%			
1. Bed	Condition	Length Appropriate	20	20			100%			
	4 Tholway Desition	Thalweg centering at upstream of meander bend (Run)	20	20			100%			
	4. maiweg Position	Thalweg centering at downstream of meander bend (Glide)	20	20			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	33	33			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	19	19			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	19	19			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	33	33			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	33	33			100%			

Table 6d. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT1 Reach 3 (STA 142+19 to 158+60)

Assessed Length: 1,641

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	22	22			100%			
	3. Meander Pool	Depth Sufficient	22	22			100%			
1. Bed	Condition	Length Appropriate	22	22			100%			
	4 Thelese Desition	Thalweg centering at upstream of meander bend (Run)	22	22			100%			
	4. maiweg Posicion	Thalweg centering at downstream of meander bend (Glide)	22	22			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
			<u> </u>	Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	38	38			100%			
3. Engineered Structures ¹	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	17	17			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	17	17			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	38	38			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	38	38			100%			
Table 6e. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT2 Reach 1 (STA 200+00 to 206+23)

Assessed Length: 623

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	15	15			100%			
	3. Meander Pool	Depth Sufficient	14	14			100%			
1. Bed	Condition	Length Appropriate	14	14			100%			
4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	15	15			100%				
4. I naiweg Position		Thalweg centering at downstream of meander bend (Glide)	15	15			100%			
		•								
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank 2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%	
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
			•	Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	11	11			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	11	11			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	12	12			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	12	12			100%			

Table 6f. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT2 Reach 2 (STA 206+23 to 217+03)

Assessed Length: 1,080

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	14	14			100%			
	3. Meander Pool	Depth Sufficient	14	14			100%			
1. Bed	Condition	Length Appropriate	14	14			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	14	14			100%			
4. Thatweg Position		Thalweg centering at downstream of meander bend (Glide)	14	14			100%			
	•	·					•			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank 2. Undercut	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	6	6			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	6			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	12	12			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	12	12			100%			

Table 6g. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT2A (STA 400+34 to 406+89)

Assessed Length: 655

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation	1		0	0	100%	1		
	2. Riffle Condition	Texture/Substrate	19	19			100%			
	3. Meander Pool	Depth Sufficient	17	17			100%			
1. Bed	Condition	Length Appropriate	17	17			100%			
4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	17	17			100%				
4. Inalweg Position		Thalweg centering at downstream of meander bend (Glide)	17	17			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank 2. Undercut	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	16	16			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	13	13			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	16	16			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	16	16			100%			

Table 6h. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT2B (STA 500+00 to 507+76)

Assessed Length: 776

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	17	17			100%			
	3. Meander Pool	Depth Sufficient	15	15			100%			
1. Bed	Condition	Length Appropriate	15	15			100%			
4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	15	15			100%				
4. Inalweg Position		Thalweg centering at downstream of meander bend (Glide)	15	15			100%			
		•								
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank 2. Undercut	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
			,	Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	7	7			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	7	7			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	12	12			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	12	12			100%			

Table 6i. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT3 Reach 1 (STA 300+13 to 307+92)

Assessed Length: 779

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			1	35	98%			
	2. Riffle Condition	Texture/Substrate	8	8			100%			
	3. Meander Pool	Depth Sufficient	8	8			100%			
1. Bed	Condition	Length Appropriate	8	8			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	8	8			100%			
4. I naiweg Position		Thalweg centering at downstream of meander bend (Glide)	8	8			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	15	99%	0	0	99%
2. Bank 2. Undercut	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
			,	Totals	1	15	99%	0	0	99%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	5	5			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	6	6			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	6	6			100%			

Table 6j. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT3 Reach 2 (STA 307+92 to 319+51)

Assessed Length: 1,159

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
	3. Meander Pool	Depth Sufficient	10	10			100%			
1. Bed	Condition	Length Appropriate	10	10			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	10	10			100%			
4. Thatweg Position		Thalweg centering at downstream of meander bend (Glide)	10	10			100%			
	·									
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank 2. Undercut	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	4	4			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
Structures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	7	7			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	7	7			100%			

Table 6k. Visual Stream Morphology Stability Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Reach: UT3 Reach 3 (STA 319+51 to STA 327+15)

Assessed Length: 764

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	6	6			100%			
	3. Meander Pool	Depth Sufficient	4	4			100%			
1. Bed	Condition	Length Appropriate	4	4			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	4	4			100%			
4. Thatweg Position		Thalweg centering at downstream of meander bend (Glide)	4	4			100%			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank 2. Undercut	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse	1		0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	4	4			100%			
3. Engineered	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
Structures ¹ 3. Bank Prote	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	6	6			100%			

Table 7. Vegetation Condition Assessment Table

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Planted Acreage	68.3				
Vegetation Category	Definitions	Mapping Threshold (acres)	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	5	0.1	0.2%
Low Stem Density Areas ^{1&2}	Woody stem densities clearly below target levels based on MY3, 4, 5, or 7 stem count criteria.	0.1	4	0.1	0.1%
		Total	9	0.2	0.3%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0	0	0.0	0.0%
		Cumulative Total	9	0.2	0.3%

Easement Acreage

103.2

Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Easement Acreage
Areas or points (if too small to render as polygons at map scale).	1000	12	1.1	1.1%
Areas or points (if too small to render as polygons at map scale).	none	0	0.0	0.0%
	Definitions Areas or points (if too small to render as polygons at map scale). Areas or points (if too small to render as polygons at map scale).	Definitions Mapping Threshold (SF) Areas or points (if too small to render as polygons at map scale). 1000 Areas or points (if too small to render as polygons at map scale). none	Definitions Mapping Threshold (SF) Number of Polygons Areas or points (if too small to render as polygons at map scale). 1000 12 Areas or points (if too small to render as polygons at map scale). none 0	Definitions Mapping Threshold (SF) Number of Polygons Combined Acreage Areas or points (if too small to render as polygons at map scale). 1000 12 1.1 Areas or points (if too small to render as polygons at map scale). none 0 0.0

¹Acreage calculated from vegetation plots monitored for site.

²Area with low stem density is less than 0.1 acres.

Stream Photographs

Photo Point 1 – UT1 Reach 1, view upstream (10/22/2019)

Photo Point 3 – UT1 Reach 1, view upstream (10/22/2019)

Photo Point 3 – UT1 Reach 1, view downstream (10/22/2019)

Photo Point 4 – UT1 Reach 2A, view upstream (10/22/2019)

Photo Point 4 – UT1 Reach 2A, view downstream (10/22/2019)

Photo Point 6 – UT1 Reach 2A, view upstream (10/22/2019)

Photo Point 6 – UT1 Reach 2A, view downstream (10/22/2019)

Photo Point 7 - UT1 Reach 2A, view upstream (10/22/2019)

Photo Point 7 - UT1 Reach 2A, view downstream (10/22/2019)

Photo Point 9 – UT1 Reach 2A, view upstream (10/22/2019)

Photo Point 9 – UT1 Reach 2A, view downstream (10/22/2019)

Photo Point 9 - UT1A, view upstream (10/22/2019)

Photo Point 14 – UT1 Reach 2B, view upstream (10/22/2019)

Photo Point 14 – UT1 Reach 2B, view downstream (10/22/2019)

Photo Point 14 – UT1B, view upstream (10/22/2019)

Photo Point 16 – UT1 Reach 3, view upstream (10/22/2019)

Photo Point 16 – UT1 Reach 3, view downstream (10/22/2019)

Photo Point 17 – UT1 Reach 3, view upstream (10/22/2019)

Photo Point 17 – UT1 Reach 3, view downstream (10/22/2019)

Photo Point 19 – UT1 Reach 3, view upstream (10/22/2019)

Photo Point 19 – UT1 Reach 3, view downstream (10/22/2019)

Photo Point 20 – UT1 Reach 3, view upstream (11/12/2019)

Photo Point 20 – UT1 Reach 3, view downstream (10/22/2019)

Photo Point 20 – UT1 Reach 3 BMP 3, view upstream (10/22/2019)

Photo Point 22 - UT2 Reach 1, view upstream (10/22/2019)

Photo Point 22 – UT2 Reach 1, view downstream (10/22/2019)

Photo Point 24 – UT2 Reach 2, view upstream (10/22/2019)

Photo Point 24 – UT2 Reach 2, view downstream (10/22/2019)

Photo Point 28 - UT2A, view upstream (10/22/2019)

Photo Point 28 - UT2A, view downstream (10/22/2019)

Photo Point 29 - UT2A, view upstream (10/22/2019)

Photo Point 30 – UT2B, view upstream (10/22/2019)

Photo Point 30 – UT2B, view downstream (10/22/2019)

Photo Point 31 – UT2B, view upstream (10/22/2019)

Photo Point 31 – UT2B, view downstream (10/22/2019)

Photo Point 33 – UT3 Reach 1, view upstream (10/22/2019)

Photo Point 33 – UT3 Reach 1, view downstream (10/22/2019)

Photo Point 34 – UT3 Reach 1, view upstream (10/22/2019)

Photo Point 34 – UT3 Reach 1, view downstream (10/22/2019)

Photo Point 36 – UT3 Reach 2, view upstream (10/22/2019)

Photo Point 36 – UT3 Reach 2, view downstream (10/22/2019)

Photo Point 42 – UT1 Reach 3, up valley (10/22/2019)

Photo Point 42 – UT1 Reach 4, down valley (10/22/2019)

Photo Point 43 - UT2A, northeast view (10/22/2019)

Photo Point 43 - UT2A, north view (10/22/2019)

Photo Point 43 – UT3 Reach 3, northwest view (10/22/2019)

Vegetation Photographs

APPENDIX 3. Vegetation Plot Data

Table 8a. Vegetation Plot Criteria Attainment

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Permanent Vegetation Plot	MY1 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Y	
7	Y	
8	Y	
9	Y	
10	Y	
11	Y	
12	Y	
13	Y	100%
14	Y	
15	Y	
16	Y	
17	Y	
18	Y	
19	Y	
20	Y	
21	Y	
22	Y	
23	Y	
24	Y	
25	Y	

Table 8b. Vegetation Plot Criteria Attainment

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Mobile Vegetation Plot	MY1 Success Criteria Met (Y/N)	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	
5	Y	
6	Ν	
7	Y	
8	Y	73%
9	Ν	
10	Ν	
11	Y	
12	Y	
13	Y	
14	Ν	
15	Y	

Table 9. CVS Permanent Vegetation Plot Metadata

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Database Name	cvs-eep-entrytool-v2.5.0 Lone Hickory MY1.mdb
Database Location	L:\Active Projects\005-02163 Lone Hickory FDP\Monitoring\Monitoring Year 1\Vegetation Assessment
Computer Name	MIMI-PC
File Size	74551296
DESCRIPTION OF WORKSHEETS IN THIS DOCU	JMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	97135
Project Name	Lone Hickory Mitigation Site
Description	Stream and wetland mitigation project in Yadkin County, NC.
River Basin	
Length(ft)	
Stream-to-edge Width (ft)	
Area (sq m)	
Required Plots (calculated)	
Sampled Plots	25
Required Plots (calculated)	25
Sampled Plots	25

Table 10a. Planted and Total Stem CountsLone Hickory Mitigation Site

DMS Project No. 97135 Monitoring Year 1 - 2019

Current Permanent Vegetation Plot Data (MY1 2019)																	
Scientific Name	Common Name	Species Type	Permanent Plot 1			Permanent Plot 2			Permanent Plot 3			Permanent Plot 4			Permanent Plot 5		
			PnoLS	P-all	Т												
Acer negundo	Box Elder	Tree															
Acer rubrum	Red Maple	Tree															
Betula nigra	River Birch	Tree	3	З	3				1	1	1	3	3	3	3	3	3
Diospyros virginiana	American Persimmon	Tree															
Fraxinus pennsylvanica	Green Ash	Tree													3	3	3
Liquidambar styraciflua	Sweet Gum	Tree															
Liriodendron tulipifera	Tulip Poplar	Tree	2	2	2	4	4	4				1	1	1	2	2	2
Platanus occidentalis	Sycamore	Tree	3	3	3	4	4	4	3	З	3	4	4	4	3	3	3
Populus deltoides	Eastern Cottonwood	Tree															
Quercus lyrata	Overcup Oak	Tree															
Quercus michauxii	Swamp Chestnut Oak	Tree	2	2	2	1	1	1	5	5	5	2	2	2	1	1	1
Quercus pagoda	Cherrybark Oak	Tree	4	4	4	2	2	2	3	З	3	1	1	1			
Quercus phellos	Willow Oak	Tree				2	2	2	2	2	2	1	1	1	1	1	1
Salix sericea	Silky Willow	Shrub Tree															
Stem count				14	14	13	13	13	14	14	14	12	12	12	13	13	13
size (ares)				1		1			1			1			1		
size (ACRES)				0.02			0.02		0.02			0.02			0.02		
Species count				5	5	5	5	5	5	5	5	6	6	6	6	6	6
Stems per ACRE				567	567	526	526	526	567	567	567	486	486	486	526	526	526

Current Permanent Vegetation Plot Data (MY1 2019)																	
Scientific Name	Common Name	Species Type	Permanent Plot 6			Permanent Plot 7			Permanent Plot 8			Permanent Plot 9			Permanent Plot 10		
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	Box Elder	Tree															
Acer rubrum	Red Maple	Tree															
Betula nigra	River Birch	Tree	3	3	3	3	3	3	3	3	7	2	2	2	2	2	2
Diospyros virginiana	American Persimmon	Tree															
Fraxinus pennsylvanica	Green Ash	Tree													2	2	2
Liquidambar styraciflua	Sweet Gum	Tree						2			4						
Liriodendron tulipifera	Tulip Poplar	Tree				1	1	1	2	2	2	2	2	2	1	1	1
Platanus occidentalis	Sycamore	Tree	3	3	3	5	5	6	2	2	88	5	5	5			
Populus deltoides	Eastern Cottonwood	Tree															
Quercus lyrata	Overcup Oak	Tree															
Quercus michauxii	Swamp Chestnut Oak	Tree	1	1	1	2	2	2	1	1	1				3	3	3
Quercus pagoda	Cherrybark Oak	Tree							5	5	5	1	1	1	2	2	2
Quercus phellos	Willow Oak	Tree	2	2	2				1	1	1	2	2	2	3	3	3
Salix sericea	Silky Willow	Shrub Tree															
Stem count				9	9	11	11	14	14	14	108	12	12	12	13	13	13
size (ares)				1		1			1			1			1		
size (ACRES)				0.02		0.02			0.02			0.02			0.02		
Species count				4	4	4	4	5	6	6	7	5	5	5	6	6	6
Stems per ACRE				364	364	445	445	567	567	567	4371	486	486	486	526	526	526

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Volunteer species included in total PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems
Table 10b. Planted and Total Stem Counts Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

		Current	Perman	ent Veg	etatio	n Plot Da	ata (M)	′1 2019)								
Scientific Name	Common Name	Species Type	Perma	anent P	lot 11	Perma	anent P	lot 12	Perma	anent P	lot 13	Perma	anent P	lot 14	Perm	anent P	lot 15
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer negundo	Box Elder	Tree															
Acer rubrum	Red Maple	Tree															
Betula nigra	River Birch	Tree	2	2	2	3	3	5	2	2	2	3	3	5			
Diospyros virginiana	American Persimmon	Tree															
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1				1	1	1	1	1	1	1	1	1
Liquidambar styraciflua	Sweet Gum	Tree															
Liriodendron tulipifera	Tulip Poplar	Tree	1	1	1	4	4	4	1	1	1						
Platanus occidentalis	Sycamore	Tree	2	2	2	1	1	1	3	3	3	4	4	4	3	3	3
Populus deltoides	Eastern Cottonwood	Tree										3	3	3			
Quercus lyrata	Overcup Oak	Tree	2	2	2	1	1	1	2	2	2	2	2	2	2	2	2
Quercus michauxii	Swamp Chestnut Oak	Tree															
Quercus pagoda	Cherrybark Oak	Tree	2	2	2	2	2	2	3	3	3				2	2	2
Quercus phellos	Willow Oak	Tree	1	1	1				1	1	1	2	2	2			
Salix sericea	Silky Willow	Shrub Tree															2
		Stem count	11	11	11	11	11	13	13	13	13	15	15	17	8	8	10
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	7	7	7	5	5	5	7	7	7	6	6	6	4	4	5
		Stems per ACRE	445	445	445	445	445	526	526	526	526	607	607	688	324	324	405

		Current	Perman	ent Veg	getation	n Plot Da	ata (MY	/1 2019)								
Scientific Name	Common Name	Species Type	Perma	anent P	lot 16	Perma	anent P	lot 17	Perma	anent P	lot 18	Perma	anent P	lot 19	Perma	anent P	lot 20
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	Box Elder	Tree															2
Acer rubrum	Red Maple	Tree				1	1	1									
Betula nigra	River Birch	Tree				1	1	1				1	1	1	3	3	3
Diospyros virginiana	American Persimmon	Tree				1	1	1									
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1	2	2	2	1	1	1	1	1	1	3	3	3
Liquidambar styraciflua	Sweet Gum	Tree															
Liriodendron tulipifera	Tulip Poplar	Tree										2	2	2	3	3	3
Platanus occidentalis	Sycamore	Tree	5	5	5	5	5	10	6	6	6	3	3	3	3	3	7
Populus deltoides	Eastern Cottonwood	Tree				2	2	2									
Quercus lyrata	Overcup Oak	Tree	2	2	2	3	3	3	5	5	5	1	1	1	1	1	1
Quercus michauxii	Swamp Chestnut Oak	Tree															
Quercus pagoda	Cherrybark Oak	Tree							1	1	1						
Quercus phellos	Willow Oak	Tree	5	5	5							2	2	2	2	2	2
Salix sericea	Silky Willow	Shrub Tree															
		Stem count	13	13	13	15	15	20	13	13	13	10	10	10	15	15	21
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	4	7	7	7	4	4	4	6	6	6	6	6	7
		Stems per ACRE	526	526	526	607	607	809	526	526	526	405	405	405	607	607	850

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Volunteer species included in total PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems

Table 10c. Planted and Total Stem CountsLone Hickory Mitigation Site

DMS Project No. 97135 Monitoring Year 1 - 2019

		Current	Perman	ent Ve	getation	n Plot D	ata (MY	1 2019)								
Scientific Name	Common Name	Species Type	Perm	anent P	lot 21	Perm	anent P	lot 22	Perma	anent P	lot 23	Perma	anent P	lot 24	Perma	anent P	lot 25
			PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	Box Elder	Tree															30
Acer rubrum	Red Maple	Tree				1	1	1	1	1	1						1
Betula nigra	River Birch	Tree	1	1	1	2	2	2	2	2	2			10			
Diospyros virginiana	American Persimmon	Tree				2	2	2	3	3	3						
Fraxinus pennsylvanica	Green Ash	Tree				2	2	2	2	2	2	1	1	1			1
Liquidambar styraciflua	Sweet Gum	Tree															
Liriodendron tulipifera	Tulip Poplar	Tree	2	2	2							1	1	1	3	3	5
Platanus occidentalis	Sycamore	Tree	3	3	13	3	3	8				1	1	1	1	1	3
Populus deltoides	Eastern Cottonwood	Tree				2	2	2	1	1	1						
Quercus lyrata	Overcup Oak	Tree	3	3	3	1	1	1	2	2	2	3	3	3	2	2	2
Quercus michauxii	Swamp Chestnut Oak	Tree															
Quercus pagoda	Cherrybark Oak	Tree	2	2	2							2	2	2	4	4	4
Quercus phellos	Willow Oak	Tree	3	3	3	1	1	1	3	3	3	2	2	2	3	3	3
Salix sericea	Silky Willow	Shrub Tree															
		Stem count	14	14	24	14	14	19	14	14	14	10	10	20	13	13	49
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	6	6	6	8	8	8	7	7	7	6	6	7	5	5	8
		Stems per ACRE	567	567	971	567	567	769	567	567	567	405	405	809	526	526	1983

	Anı	nual Mean						l.
Scientific Name	Common Name	Species Type	м	Y1 (201	.9)	м	YO (201	.9)
			PnoLS	P-all	т	PnoLS	P-all	т
Acer negundo	Box Elder	Tree			32			
Acer rubrum	Red Maple	Tree	3	3	4	3	3	3
Betula nigra	River Birch	Tree	43	43	61	55	55	55
Diospyros virginiana	American Persimmon	Tree	6	6	6	6	6	6
Fraxinus pennsylvanica	Green Ash	Tree	22	22	23	23	23	23
Liquidambar styraciflua	Sweet Gum	Tree			6			
Liriodendron tulipifera	Tulip Poplar	Tree	32	32	34	58	58	58
Platanus occidentalis	Sycamore	Tree	75	75	188	77	77	77
Populus deltoides	Eastern Cottonwood	Tree	8	8	8	8	8	8
Quercus lyrata	Overcup Oak	Tree	32	32	32	33	33	33
Quercus michauxii	Swamp Chestnut Oak	Tree	18	18	18	23	23	23
Quercus pagoda	Cherrybark Oak	Tree	36	36	36	42	42	42
Quercus phellos	Willow Oak	Tree	39	39	39	46	46	46
Salix sericea	Silky Willow	Shrub Tree			2			
		Stem count	314	314	489	374	374	374
		size (ares)		25			25	
		size (ACRES)		0.62			0.62	
		Species count	11	11	14	11	11	11
		Stems per ACRE	508	508	792	605	605	605

Color for Density

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% Volunteer species included in total PnoLS: Number of planted stems excluding live stakes P-all: Number of planted stems including live stakes T: Total stems

Table 10d. Planted and Total Stem Counts Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

			Curre	nt Mobile Vege	etation Plot (M	P) Data (MY1 2	2019)					
Scientific Name	Common Name	Species Type	MP1	MP2	MP3	MP4	MP5	MP6	MP7	MP8	MP9	MP10
			PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS
Acer negundo	Box Elder	Tree										
Acer rubrum	Red Maple	Tree			1		2					
Betula nigra	River Birch	Tree	4	2	1	1	1	1	2	3		1
Diospyros virginiana	American Persimmon	Tree										
Fraxinus pennsylvanica	Green Ash	Tree	1					1	1			1
Liquidambar styraciflua	Sweet Gum	Tree										
Liriodendron tulipifera	Tulip Poplar	Tree		2	1		1					
Platanus occidentalis	Sycamore	Tree	1	7	1	5	1	4	5	5	3	2
Populus deltoides	Eastern Cottonwood	Tree										
Quercus lyrata	Overcup Oak	Tree	1		4	5	4		3	3	4	2
Quercus michauxii	Swamp Chestnut Oak	Tree										
Quercus pagoda	Cherrybark Oak	Tree						1				1
Quercus phellos	Willow Oak	Tree	2	1						1		
Salix sericea	Silky Willow	Shrub Tree										
		Stem count	9	12	8	11	9	7	11	12	7	7
		size (ares)	1	1	1	1	1	1	1	1	1	1
		size (ACRES)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
		Species count	5	4	5	3	5	4	4	4	2	5
		Stems per ACRE	364	486	324	445	364	283	445	486	283	283

	Current N	1obile Vegetation F	Plot (MP) Data	(MY1 2019)				Annua	l Mean
Scientific Name	Common Name	Species Type	MP11	MP12	MP13	MP14	MP15	MY1 (2019)	MY0 (2019)
			PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS	PnoLS
Acer negundo	Box Elder	Tree							
Acer rubrum	Red Maple	Tree						16	
Betula nigra	River Birch	Tree	3	7	1		1	28	27
Diospyros virginiana	American Persimmon	Tree							
Fraxinus pennsylvanica	Green Ash	Tree		2	1		1	8	18
Liquidambar styraciflua	Sweet Gum	Tree							
Liriodendron tulipifera	Tulip Poplar	Tree	3	3			2	12	47
Platanus occidentalis	Sycamore	Tree	4	3	6	2	11	60	43
Populus deltoides	Eastern Cottonwood	Tree							
Quercus lyrata	Overcup Oak	Tree						26	7
Quercus michauxii	Swamp Chestnut Oak	Tree							5
Quercus pagoda	Cherrybark Oak	Tree	5	4	4	3	1	19	56
Quercus phellos	Willow Oak	Tree						2	13
Salix sericea	Silky Willow	Shrub Tree							
		Stem count	15	19	12	5	16	171	216
		size (ares)	1	1	1	1	1	15	15
		size (ACRES)	0.02	0.02	0.02	0.02	0.02	0.37	0.37
		Species count	4	5	4	2	5	8	8
		Stems per ACRE	607	769	486	202	647	461	583

Overall Site	Annual Mean
MY1 (2019)	MY0 (2019)
PnoLS	PnoLS
19	3
71	82
6	6
30	41
44	105
135	120
8	8
58	40
18	28
55	98
41	59
485	590
40	40
0.99	0.99
11	11
491	597

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of planted stems excluding live stakes

APPENDIX 4. Morphological Summary Data and Plots

Table 11a. Baseline Stream Data Summary Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 0 - 2019

Fast Side

East Side																							
			Pre-	Restorat	ion Cond	ition					De	sign						·	As-Built,	/Baselin	e		
Parameter	Gage	UT1 F	Reach 1	UT1 R	each 2	UT1 R	each 3	UT1 R	each 1	UT1 Re	each 2A	UT1 Re	each 2B	UT1 R	each 3	UT1 R	each 1	UT1 R	each 2A	UT1 Re	each 2B	UT1 R	each 3
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle				•						1		1		•				-		-			
Bankfull Width (ft)		4	1.8	8	.9	10	0.0	6	.5	7	.8	10).7	11	L.8	6	5.9	7	7.3	10.3	10.5	11.3	12.5
Floodprone Width (ft)		1	3.1	13	3.2	3:	1.1	15	50	15	50	25	100	25	100	2	29	46	65+	49+	68+	60+	68+
Bankfull Mean Depth (ft)		().8	0	.8	1	3	0	.5	0	.5	0	.8	0	.8	0).6	0).6	0	.8	0.	.7
Bankfull Max Depth (ft)		1	L.4	1	.3	1	9	0	.6	0	.7	1	.0	1	.0	1	0	0.9	1.0	1.2	1.3	1.	.1
Bankfull Cross-sectional Area (ft ²)	N/A	Э	3.8	7	.2	1	3.4	3	.0	4	.2	8	.1	9	.5	4	.2	4.5	4.6	7.9	8.5	8.3	8.7
Width/Depth Ratio		e	5.2	11	0	7	<i>'</i> .5	14	4.2	14	4.6	14	1.3	14	1.6	1	1.5	11.5	11.8	12.9	13.3	15.5	18.0
Entrenchment Ratio		2	2.7	1	.5	3	8.1	2.	2+	2.	2+	2.	2+	2.	2+	4	.2	6.3	9.0+	4.7+	6.6+	5.3+	5.4+
Bank Height Ratio			3.8	2	.6	1	7	1	.0	1	.0	1	.0	1	.0	1	0	1	L.O	1	.0	1.	.0
D ₅₀ (mm)		1	5.1	41	1.0	1	9.6	-		-		-		-		5	9.6	37.0	37.9	35.6	45.0	41.6	47.4
Profile				<u> </u>		L				1		1		<u> </u>				<u> </u>	<u> </u>	<u>I</u>			
Riffle Length (ft)																		T					
Riffle Slope (ft/ft)								0.020	0.041	0.011	0.055	0.018	0.045	0.016	0.048	N/A^1	N/A ¹	0.003	0.068	0.013	0.072	0.013	0.055
Pool Length (ft)								0.020	0.041	0.011	0.055	0.010	0.045	0.010	0.040	11/7	11/7	0.003	0.000	0.015	0.072	0.015	0.055
Pool Max Depth (ft)	N/A	1	1 4	1	4	1	7	1	7	1	8	3	2	2	9	11	2.0	12	28	1.0	2.1	1.0	27
Pool Spacing (ft)		5	20	20	12	10	22	14	26	16	20	24	100	10		5	76	1.5	51	1.0	1/15	1.0	120
Pool Spacing (it)		5	20	2.5	42	10	52	14	20	10	33	54	105	40	115	5	70	0	51	10	145	41	129
Pool volume (ft.)																							
Pattern		6	42	1		42			<i>(</i> , 2		<i>(</i> , 2)	24	67	05			1.2		1.2		67	- 25	74
Channel Beltwidth (ft)		6	12	-		12	14	N/	/A ⁻	N,	/A ⁻	31	6/	35	/1	N	/A ⁻	N	/A ⁻	31	6/	35	/1
Radius of Curvature (ft)		3	8	-		5	12	N/	/A ²	N,	/A ²	20	38	19	38	N	/A ²	N	/A ²	20	38	19	38
Rc/Bankfull Width (ft/ft)	N/A	0.6	1.7	-	!	5	12	N/	/A ²	N,	/A ²	1.9	3.6	1.6	3.2	N	/A ²	N	/A ²	1.9	3.6	1.7	3.0
Meander Length (ft)		9	19	-		14	43	N/	/A ²	N	/A ²	102	190	102	196	N	$/A^2$	N	$/A^2$	102	190	102	196
Meander Width Ratio		1.3	2.5	-		1.2	1.4	N	/A ²	N	/A ²	2.9	6.3	3.0	6.0	N	$/A^2$	N	$/A^2$	3.0	6.4	3.1	5.7
Substrate, Bed and Transport Parameters			1	1			1	,		<u> </u>		1	1	1	1			1		1			
Bi%/Ru%/P%/G%/S%																		1					
SC%/Sa%/G%/C%/B%/Be%																							
		SC/0.37	/3.7/54.2/	1.35/11.	0/38/90/	0.19/0.3	39/0.73/									0.4/1.	8/33.9/	0.3/14	.1/21.6/	0.3/0.4	4/22.6/	0.3/16	/25.6/
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	N/A	75.9	9/128	193.1	/2048	26.3/5	52.5/90									108/15	6.5/256	67.2/1	37/362	59.2/10	.7/362	62.4/11	3.8/180
Reach Shear Stress (Competency) lb/ft ²	,/			-		-		1.	74	0.	.95	0.	75	0.	76	1	.97	1.06	1.08	0.85	0.88	0.65	0.68
Max part size (mm) mobilized at bankfull								2	28	1	46	1	23	1	25		97	52	53	42	43	32	33
Stream Dower (Canacity) W/m ²									20	-	10			-				52	55	72		52	- 55
Additional Basch Parameters				!						!		[I				<u> </u>		<u> </u>			
Additional Reach Parameters		0	07	0	27	0	15	0	07	0	12	0	20	0	11	0	07	0	12	0	22	0	11
Dialitage Area (SIV)		0	.07	2	0/	0.	.4J	0.	.07	0.	.12	<u>0</u> ،	32	0.	44	0.	.07	0	.12	0.	32	0	++
Watershed Impervious Cover Estimate (%)			Eb	3	/0		- 1		4		2		· 1		`A	,	1		<u>э</u>	·/•	-1		.1
Rosgen Classification			20		4 0		1		1		7		.4		.4		0	20	D4	4.1	.4	27	-4
Bankfull Velocity (Ips)			11	4	.0	4	F. L	4	.1	3	./	3	.0	4	.0	4	•.o	3.9	4.0	4.1	4.2	3.7	3.8
Bankfull Discharge (CIS)			11	3	5		00		.1		1.5	3	0	3	0	2	0.2	17.7	18.3	32.7	36.2	30.4	31.0
Q-INFF regression (2-yr)	N/A			-	-			1	1	1	6		4		2								
Q-OSGS extrapolation (1.2-yr)				-	-	-			01		0.4	3	04		10								
Max Q-Mannings				-			040	60	01	3	04	30	225	2	202								
Valley Slope (ft/ft)		0.0	J411	0.0	+54	0.0	1049	0.0	048	0.0	246	0.0	225	0.0	203				740	-			
Channel Thalweg Length (ft)			00	6,0	115		10	9	סס	1,	/40	1,5	308	1,6	20	9	00	1,	/40	1,:	25	1,6	20
Sinuosity			.08		J4		.13		622		200		25		30				202		25	1.	30
Bankfull/Channel Slope (ft/ft)		0.0	1295	J 0.0	256	0.0	101	0.0	622	J 0.0	290	J 0.0	180	J 0.0	120	0.0	1555	0.0	1292	J 0.0	187	0.0	153

1. UT1 Reach 1 riffle slopes were not calculated because this reach is comprised of a series of rock steps and cascades.

Pattern data is not applicable for A-type and B-type channels
 SC: Silt/Clay <0.062 mm diameter particles
 (---): Data was not provided
 N/A: Not Applicable

Table 11b. Baseline Stream Data Summary Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

West Side - UT2, UT2A, UT2B

					Pre	Resto	ation Cond	ition							Des	sign							As-built,	/Baseline	3		
Parameter	Gage	UT	2 Reach 1	UT2 Re	each 2	UT	Reach 3	UT2	2A	UT	7 2 B	UT2 R	each 1	UT2 R	each 2	UT	2A	דט	2B	UT2 Re	each 1	UT2 R	leach 2	UT	2A	UT	2В
		Mir	n Max	Min	Max	Mir	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle						-										r		1				-	•	r			
Bankfull Width (ft)			8.7	7.	.7		8.4	3.4	4.7	3.9	4.1	6	.5	11	1.0	5.	5	7	.5	8.	3	11.8	11.9	5.4	5.7	7.2	9.6
Floodprone Width (ft)			12.3	10).7		13.0	5.4	11.4	5.1	6.4	13	0+	25	50+	10	0+	10	0+	69)+	65+	72+	51+	57+	56+	66+
Bankfull Mean Depth (ft)			0.7	0.	.8		0.7	0.5	0.7	0	.3	0	.5	0	.7	0.	4	0	.5	0.	7	0.8	0.9	0.4	0.4	0.5	0.5
Bankfull Max Depth (ft)			0.9	1.	.2		1.1	0.9	9	0.5	0.6	0	.8	1	.0	0.	6	0	.9	1.	2	1.2	1.3	0.5	0.7	0.8	0.8
Bankfull Cross-sectional Area (ft ²)	N/A		5.7	6.	.1		5.7	2.2	2.3	1.3	1.4	3	.9	7	.8	2.	1	4	.1	6.	1	9.1	10.2	1.9	2.4	3.9	4.3
Width/Depth Ratio			13.1	9.	.8		12.3	5.1	9.5	11.4	13.0	14	1.0	16	5.0	14	.0	14	1.0	11	.3	13.6	15.6	13.6	15.2	13.4	21.1
Entrenchment Ratio			1.4	1.	.1		1.5	1.6	2.4	1.2	1.6	2.	2+	2.	2+	2.1	2+	1.4	2.2+	8.3	}+	5.5+	6.1+	9.0+	10.5+	6.9+	7.8+
Bank Height Ratio			4.4	2.	.3		3.1	2.7	3.1	6.5	7.2	1	.0	1	.0	1	0	1	.0	1.	0	1	L.O	1	.0	1.	0
D ₅₀ (mm)			34.4	11	4				-					-			-	-		26	.9	25.4	33.4	21.0	28.1	25.1	30.6
Profile																-								-			
Riffle Length (ft)													-		•				-				•				
Riffle Slope (ft/ft)												0.020	0.034	0.003	0.025	0.006	0.045	0.004	0.056	0.006	0.034	0.004	0.035	0.001	0.046	0.001	0.037
Pool Length (ft)	Ν/Δ														•												
Pool Max Depth (ft)	,//		1.2	1.	.5		1.5		-			1.1	1.8	1.1	2.5	0.6	1.4	0.8	1.9	1.2	2.5	2.1	3.2	0.9	1.3	1.5	2.7
Pool Spacing (ft)		24	30	22	44	23	68		-			8	45	39	77	19	39	26	53	15	78	45	127	18	58	7	58
Pool Volume (ft ³)																											
Pattern														1		-		1									
Channel Beltwidth (ft)					-				-			N/	Ά ¹	39	88	19	44	26	60	N/	A ¹	39	88	19	44	26	60
Radius of Curvature (ft)					-				-			N/	'A ¹	20	39	10	19	14	23	N/	A ¹	20	39	10	19	14	23
Rc/Bankfull Width (ft/ft)	N/A				-				-			N/	Ά ¹	1.8	3.5	1.8	3.5	1.8	3.0	N/	A ¹	1.7	3.3	1.9	3.3	1.9	2.4
Meander Length (ft)					-				-			N/	Ά ¹	72	154	36	77	49	105	N/	A ¹	72	154	36	77	49	105
Meander Width Ratio									-			N/	'A ¹	3.5	8.0	3.5	8.0	3.5	8.0	N/	A ¹	3.3	7.4	3.5	7.7	3.6	6.3
Substrate, Bed and Transport Parameters								-						-	-			-					-			-	
Ri%/Ru%/P%/G%/S%																											
SC%/Sa%/G%/C%/B%/Be%																											
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	N/A	0.37 49.5	7/1.38/7.1/ 5/75.9/128	0.25/	/0.59/1.1	L/17.9/	35.9/90		-					-			-	-		SC/SC/0. 90/2	5/47.3/ 128	SC/SC, 71.7	/SC/42/ 7/180	SC/SC/0 90/	.5/42.5/ 180	SC/SC/0 82.6	.4/43.3/ /256
Reach Shear Stress (Competency) lb/ft ²	,								-			0.	66	1.	66		-	-		0.7	79	0.33	0.38	-			
Max part size (mm) mobilized at bankfull					-				-			11	12	2	21		-	-		3	9	16	19	-			
Stream Power (Capacity) W/m ²																											
Additional Reach Parameters						-																					
Drainage Area (SM)			0.14	0.2	26		0.27	0.0)2	0.	.04	0.	14	0.	26	0.)2	0.	05	0.1	L4	0	.26	0.	02	0.	35
Watershed Impervious Cover Estimate (%)			•	19	%				-				1	.%			-	-			1	%		-			
Rosgen Classification			G4	G	5		G5	G	5	G	65	В	4	0	24	C	4	C/0	Cb4	B	4	(C4	C	4	C	4
Bankfull Velocity (fps)			3.4	2.	.3		1.8	1.6	1.8	1.7	1.8	3	.4	2	.6	1	9	2	.0	3.	9	2.6	2.8	1.9	2.1	2.3	2.6
Bankfull Discharge (cfs)			19	14	4		10	4		2	3	1	4	2	20	2	ļ	:	3	24	.0	23.6	28.9	3.7	5.1	10.1	10.1
Q-NFF regression (2-yr)	NI/A				-				-																		
Q-USGS extrapolation (1.2-yr)	N/A				-				-			1	8	2	29	4	ļ		Э								
Max Q-Mannings					-				-			33	31	7	75	5	2	1	24								
Valley Slope (ft/ft)			0.0205	0.01	123		0.0086	0.00)28	0.0	027	0.0	280	0.0045	0.0130	0.0057	0.0170	0.0060	0.0400		-	-		-			-
Channel Thalweg Length (ft)				2,5	27			1,13	84	69	99	62	23	10	080	65	5	7	76	62	3	1,	080	6	55	77	'6
Sinuosity			1.01	1.0	02		1.05	1.0	00	1.	.00	1.	10	1.	30	1.	20	1.	20	1.1	LO	1	.30	1.	20	1.	20
Bankfull/Channel Slope (ft/ft)			0.0154	0.00	062		0.0043	0.00)52	0.0	107	0.0	200	0.0030	0.0120	0.0050	0.0140	0.0040	0.0280	0.01	L80	0.0	0072	0.0	110	0.0	115

1. Pattern data is not applicable for B-type channels

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

Table 11c. Baseline Stream Data Summary Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

West Side - UT3

West Side - 015			Pre- Res	storation				De	sign					As-Built	/Baselin	e
Parameter	Gage	UT3 R	each 1	UT3 F	Reach 2	UT3 R	each 1	UT3 R	each 2	UT3 R	each 3	UT3 R	leach 1	UT3 R	each 2	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Dimension and Substrate - Riffle			·	I	·			·								
Bankfull Width (ft)		11	1.2	1	0.0	13	3.0	10	5.2	19	9.0	1	3.7	10	ŝ. 7	
Floodprone Width (ft)		17	7.4	1	50+	7	′5	10)0+	42	219	7	'3+	7	6+	
Bankfull Mean Depth (ft)		1	.2	1	L.O	0	.9	1	.0	1	.1	0).9	1	.0	
Bankfull Max Depth (ft)		1	.8	2	2.1	1	.4	1	.7	2	.0	1	l.5	1	.9	L
Bankfull Cross-sectional Area (ft ²)	N/A	13	3.7	1	0.2	12	2.1	10	5.2	21	1.1	1	2.8	16	ô.5	
Width/Depth Ratio		9	.1	9	9.9	14	1.4	10	5.2	17	7.1	14	4.7	1	7.0	
Entrenchment Ratio		1	.3	14	1.9+	1.4	2.2+	2.	2+	2.	2+	5.	.3+	4.	5+	L
Bank Height Ratio		2	.6	1	L.4	1	.0	1	.0	1	.0	1	L.O	1	.0	L
D ₅₀ (mm)		12	2.5	0	0.9	-		-		-		5	0.0	3:	1.2	
Profile				•						•				•		
Riffle Length (ft)																
Riffle Slope (ft/ft)						0.012	0.017	0.002	0.022	0.002	0.008	0.001	0.023	0.002	0.012	0.
Pool Length (ft)	NI / A						-		-		-		-			
Pool Max Depth (ft)	N/A	1	.9	2	2.7	1.9	3.3	1.5	3.5	1.7	3.9	2.8	3.9	2.5	4.1	
Pool Spacing (ft)		12	87	48	185	169	1014	57	113	67	133	64	163	53	186	
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)		4	10			N/	/A ¹	57	130	67	152	N	/A ¹	57	130	
Radius of Curvature (ft)	1	4	8			N	$/A^1$	29	57	34	67	N	$/A^1$	29	57	
Rc/Bankfull Width (ft/ft)	N/A	0.4	0.7			N/	$/A^1$	1.8	3.5	1.8	3.5	N	/A ¹	1.7	3.4	
Meander Length (ft)		15	28			N/	/A ¹	105	227	124	266	N	/A ¹	105	227	
Meander Width Ratio		0.4	0.9			N/	/A ¹	3.5	8.0	3.5	8.0	N	/A ¹	3.4	7.8	
Substrate, Bed and Transport Parameters			<u>!</u>	<u>I</u>				1	I	I	I		•	<u>I</u>		-
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%	1															
	1	0.22/0.	87/2.5/	SC/0.1	.2/0.24/							SC/0.	2/0.4/	SC/SC/C).2/41.6/	S
$D_{16}/D_{35}/D_{50}/D_{84}/D_{95}/D_{100}$	N/A	22.6/4	7.7/64	4.63/	7.7/16	-		-		-		59.2/10	07.3/180	61.5	/180	
Reach Shear Stress (Competency) lb/ft ²		-				0.	61	-		-		0.	.42	-		
Max part size (mm) mobilized at bankfull		-				1	06	-		-		2	21	-		
Stream Power (Capacity) W/m ²																
Additional Reach Parameters																
Drainage Area (SM)		0.	59	0	.65	0.	63	0.	63	0.	88	0.	.63	0.	.63	
Watershed Impervious Cover Estimate (%)			2	!%				2	.%					2	%	
Rosgen Classification		Ģ	64	(G5	B	4c	(24	0	24	В	84c	0	.4	
Bankfull Velocity (fps)		4	.0	2	2.0	3	.6	2	.7	1	.8	3	3.0	1	.9	L
Bankfull Discharge (cfs)		54	4.8	2	0.4	4	15	4	15	5	55	3	8.6	3:	1.1	L
Q-NFF regression (2-yr)	N/A	-				-		-		-						
Q-USGS extrapolation (1.2-yr)		-		· ·		5	53	5	56	7	/1					
Max Q-Mannings		-		· ·		3	70		89	N/	/A ²					
Valley Slope (ft/ft)		0.0	145	0.0	0050	0.0	120	0.0030	0.0140	0.0	022	-		-		Ĺ
Channel Thalweg Length (ft)			2,0	800		7	79	11	.59	7	64	7	79	1,:	159	Ĺ
Sinuosity		1.	06	1	.01	1.	10	1.	40	1.	20	1.	.10	1.	.40	L
Bankfull/Channel Slope (ft/ft)		0.0	107	0.0	0034	0.0	110	0.0020	0.0110	0.0	020	0.0	075	0.0	027	

1. Pattern data is not applicable for B-type channels

2. UT3 Reach 3 post-restoration combines flow from the existing conditions UT2 Reach 3 and UT3.

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

-	
UT3 R	each 3
Min	Max
19	9.2
7:	1+
1	.0
1	.9
19	9.5
19	9.0
3.	7+
1	.0
47	<i>'</i> .0
0.0002	0.005
3.3	3.9
83	180
67	152
24	67
54	07
1.8	3.5
124	266
3.5	7.9
SC/SC/	SC/64/
151.8	8/362
0.	88
C	4
0	.8
16	5.0
	54
1	20
0.0	005
11.17	

Table 11d. Reference Reach Data Summary Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

									Reference	Reach Data	1						
_						Lone Hick	kory UT3 -			UT to S. Fo	rk Catawba			Deep	Creek		
Parameter	Gage	UI to Ke	lly Branch	Pilot Mo	untain Trib	Onsite R	eference	UI to Sout	th Crowders	- Vile P	reserve	UI to Ly	le Creek	Mitig	gation	Cooleemee	Plantation
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
Bankfull Width (ft)		6	5.4	8	3.6	6	.7	6.1	8.4	6.1	6.2	7.0	8.6	12	2.9	14.7	18.1
Floodprone Width (ft)	Ī	9	9.1	1	3.3	20	0.0	26.0	31.0	20	0+	45.0	49.0	13	5.0	14	10+
Bankfull Mean Depth	İ	C).7	().7	0	.5	1.0	1.1	0.7	0.8	0	.5	1	4	0.8	1.0
Bankfull Max Depth	Ī	C).9	:	1.0	0	.8	1	.4	1.3	1.4	1.0	1.1	2	.3	1	6
Bankfull Cross-sectional Area (ft ²)	N/A	4	1.5	(5.0	3	.6	6.4	8.7	4.5	5.3	3.5	4.1	17	7.1	13.6	14.9
Width/Depth Ratio		9	9.2	1	2.5	13	3.4	5.8	8.0	7.4	8.3	14.9	18.3	9	.6	14.6	24.1
Entrenchment Ratio		1	L.4		1.5	3	.0	3.7	4.3	30)+	5.7	6.4	10	0.5	8	.8+
Bank Height Ratio		1	L.O		1.0	1	0	1.4	2.1	1	.0	1	0	1	0	1	0
D50 (mm)		9	9.4			-		-		-		-		-		-	
Profile																	
Riffle Length (ft)						-		-		-		-		-		-	
Riffle Slope (ft/ft)	I	-		0.0150	0.1200	0.0229	0.0615	0.0202	0.0664	0.0	260	0.0055	0.0597	0.0019	0.009	0.0027	0.0130
Pool Length (ft)		-				-		-		-		-		-		-	
Pool Max Depth (ft)	IN/A	-			1.6	2	.0	1.3	3	1	.4	1	3	3	.2	2	.0
Pool Spacing (ft)		-		7	52	13	77	28	63	4	5	15	28	29	103	19	35
Pool Volume (ft ³)																	
Pattern				•		•				•		•				•	
Channel Beltwidth (ft)		18	34			12	31	8	81	-		2	21	45	71	22	30
Radius of Curvature (ft)	İ	8	26			-		9	20	-		19	32	18	33	14	38
Rc/Bankfull Width (ft/ft)	N/A	1.2	4.1			-		1.5	2.4	-		2.7	3.7	1.4	2.6	0.9	2.3
Meander Length (ft)	İ	27	94			5	55	45	72	-		39	44	95	130	58	70
Meander Width Ratio	İ	2.8	5.3			1.8	4.6	9.6	13.3	-		2.4	3.0	3.5	5.5	1.3	1.8
Substrate, Bed and Transport Parameters				•		•	•	•		•		•	•	•	•	•	•
Ri%/Ru%/P%/G%/S%																	
SC%/Sa%/G%/C%/B%/Be%	İ																
	İ	0.25/3.2	2/9.4/45/	SC/5.6/2	20.1/128/	0.2/1.5/1	6.8/69.7/	0.8/12.1/	19.7/49.5/			NA/0.07/	0.17/0.54/	SC/0.2/	0.2/1.1/		
d16/d35/d50/d84/d95/d100	N/A	140	0/	322.5	/>2048	115.7	7/180	75.9	9/180	-		4.0	/8.0	8.9/	22.6	-	
Reach Shear Stress (Competency) lb/ft ²																	
Max part size (mm) mobilized at bankfull																	
Stream Power (Canacity) W/m ²																	
Additional Reach Parameters								1									
Drainage Area (SM)		0	.08	0	.27	0.	17	0	.22	0.	94	0.	25	0.	67	0	.68
Watershed Impervious Cover Estimate (%)						-				-		-		-			
Rosgen Classification			44		R4	- C	`4		F4	F	5	0	`5	0	`5	(`5
Bankfull Velocity (fns)			14		53	3	2	2	29	1	1	4	.7	2	4	1	8
Bankfull Discharge (cfs)			19		32	1	2		22	5	4	1	18	4	11		
O-NEE regression (2-yr)			19		52										-		
O-LISGS extrapolation (1.2-yr)	N/A																
O-Mannings	,																
Valley Length (ft)	ł					-		-		-		-		-		-	
Channel Thalweg Length (ft)	ł	<u> </u>				- 1		<u> </u>		-		-		-		<u> </u>	
Sinuncity	ł	1	.2	1	.05	1	32	2	.20	1	03	1	.10	1	.60	1	.10
Water Surface Slope (ft/ft)	ł					-				-		-		-		<u> </u>	
Bankfull/Channel Slope (ft/ft)	+	0.03	- 0.065	0.0	0378	0.0	185	0.0	0091	0.0	068	0.0	057	0.0	028	0.0	027
	1	0.05	5.005	1 0.0		0.0		0.0		0.0		0.0		0.0		0.0	~_/

SC: Silt/Clay <0.062 mm diameter particles (---): Data was not provided N/A: Not Applicable

Table 12a. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019 Monitoring Year 1 - 2019

East Side (UT1)

Dimension and Substrate ¹ MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY6 MY1 MY2 MY3 MY6 MY1 MY2 MY3 MY6 MY3 MY6 MY7 MY0 MY1 MY2 MY3 MY6 MY3 MY3 MY6 MY1 MY2 MY3 MY6 MY3 </th <th></th> <th>0 0 / D</th> <th>Diffle</th> <th></th> <th></th>		0 0 / D	Diffle		
Dimension and Substrate ⁴ MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY3 MY3 MY4 MY3 MY3 </th <th>Section</th> <th>on 4, R</th> <th>Riffie</th> <th></th> <th>4</th>	Section	on 4, R	Riffie		4
bankfull elevation 918.84 918.82 918.21 918.21 918.21 918.21 970.39 970.39 970.39 980.46 868.46	MY4	MY	Y5 M	NY6	MY7
Invank height elevation 918.84 918.82 918.21 870.19 870.39 868.46					
Bankfull Width (ft) 8.2 8.5 6.9 7.0 9.2 9.9 7.3 9.2 Floodprone Width (ft) 46 46	<u> </u>				
Floodprone Width (ft) 46 46 46					
	<u> </u>				
Bankfull Mean Depth (ft) 1.0 0.9 0.6 0.5 1.2 1.2 0.6 0.6 0.6	·				
Bankfull Max Depth (ft) 1.8 1.6 1.0 0.9 2.1 2.5 0.9 1.1					
Bankfull Cross-Sectional Area (ft ²) 8.5 7.3 4.2 3.5 11.4 12.1 4.5 5.1	1				
Bankfull Width/Depth Ratio 7.8 9.9 11.5 13.9 7.4 8.0 11.8 16.4					1
Bankfull Entrenchment Ratio					1
Bankfull Bank Height Ratio					
UT1 Reach 2A Cross-Section 5, Riffle UT1 Reach 2A Cross-Section 6, Pool UT1 Reach 2B Cross-Section 7, Riffle UT1 Reach 2B Cross-	-Sectio	on 8, P	Pool		
Dimension and Substrate ¹ MYO MY1 MY2 MY3 MY4 MY5 MY6 MY7 MYO MY1 MY2 MY3 MY4 MY5 MY6 MY7 MYO MY1 MY2 MY3 MY4 MY5 MY6 MY7 MYO MY1 MY2 MY3	MY4	MY	Y5 M	VIY6	MY7
hankfull elevation 844 23 844 26 843 72 843 74 843 743 743 743 743 743 743 743 743 743 7		-	-	-	
Owned beingt elevation 844 23 844 26 843 77 843 77 843 77 817 14 809 31 809 33		-		_	
Bankill With (ft) 73 81 0 01 05 00 00 00 00 00 00 00 00 00 00 00 00	<u> </u>				<u> </u>
	├ ──	+			+
	<u> </u>				<u> </u>
Baptrill May Depth (t) 10 12 14 14 12 12 10 12 12 10 12 12 10 12 12 10 12 12 10 12 12 10 12 12 10 12 12 10 12 12 10 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	├ ──	+			+
Demining was being (h) 1.0 1.2 1.3 2.3 1.4 1.3 2.0 2.1 Baseling mass being (h) 4.6 5.2 1.0 1.2 1.0	├ ──	+			+
Bankruit (ross-sectional Area (r.) 4.6 5.3 10.0 11.5 15.6 7.9 7.5 10.0 13.4 12.8	──'	4			──
Bankfull Width/Depth Ratio 11.5 12.4 7.9 b.b 10.1 12.5 12.4 10.3 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13	 '				
Bankfull Entrenchment Ratio 9.0+ 8.1+	<u> </u>	4			4
	Castion	. 12 4	Deel		
UTI Reach 26 Cross-Section 9, Kime UTI Reach 3 Cross-Section 10, Kime UTI Reach 3 Cross-Section 11, Kime UTI Reach 3 Cross-Section 11, Kime	section	n 12, P	POOL		
Dimension and Substrate ⁴ MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3 MY4 MY5 MY6 MY7 MY0 MY1 MY2 MY3	MY4	MY	Y5 M	ЛҮ6	MY7
hapkfull elevation 201 52 201 64 707 07 10 703 06 701 15 701 06 701 15 701 06	ļ'	4			
Duinguineevation 004.30 004.34 004.30 104.34 73.30 73.13 73.10 73.13 73.00 75.13 73.00 75.13 73.00 75.13 75.10 75.13 75.10 75.13 75.10 75.13 75.10 75.13 75.10 75.	ļ'				
Instruction Out-Subscription	1 2	-			
Instruction Out-Subscription				_	
Outrour certain Outrour					
Outright elevation Outrigh					
Outright elevation Outright					
Definition of the dirict level of the diris dirict level of the dirict level of the dirict leve					
Odingun certation Out-Su Ou					
Dampin certation Out-Size					
Dampin certain Out-Set -set< th=""> Out-Set<</thout-set<>					
Dampin Certain Out-Si Out-Si <th< th=""><th></th><th></th><th></th><th></th><th></th></th<>					
Dampin ceretorin Out-Side Parta Parta<					
Dampin ceretorin Over-Set					
Image control Out-out Image control Out-out Image control Image contro Image contro <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
Jow bank height elevation consistence 781.34 781.05 781.35 781.06 781.34 781.92 1 Iow bank height elevation 804.64 Image: consistence of consis consis consistence of consistence of consistence of					
Description Description					
Damping Concernance 791-30 791-30 791-30 791-30 787-32 787-82 I ob bank height elevation 804.54 0 794-30 793-30 0 791.15 791.05 0 787-82 0 Bankfull Width (ft) 10.5 11.5 0 11.3 10.8 0 12.5 11.6 0 16.7 16.2 0 Bankfull Man Depth (ft) 0.8 0.8 0.8 0.8 0.7 0.8 0.7 0.7 0 1.1 1.1 0 Bankfull Max Depth (ft) 0.8 0.8 0.7 0.8 0 0.7 0.7 0 1.1 1.1 0 Bankfull Cross-Sectional Area (ft) 8.5 8.9 0 0.8 8.3 8.3 0 8.7 7.7 0 0 1.8.7 17.8 0 Bankfull Bank Height Ratio 1.0 1.0 1.0 1.0 1.0 0.9 0 0 0 0 0 0 <					
During Control Dort Adv Dort Adv Dort Adv Part Adv					
Dumpin Exerction Out-on- Out-on- Parta Parta </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Dampartex Value Out-of Out-of <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Data water Device Devic					

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

Table 12b. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

West Side (UT2 & UT2A)

		UT2 F	Reach 1	Cross-	Section	14, Po	ol			UT2 R	each 1	Cross-S	Section	15, Riff	fle			UT2 R	Reach 2	Cross-S	Section	16, Riff	le			UT2 R	each 2	Cross-S	ection	17, Riff	le	
Dimension and Substrate ¹	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
bankfull elevation	772.71	772.82							772.61	772.56							759.49	759.31							758.87	758.82						
low bank height elevation	772.71	772.82							772.61	772.56							759.49	759.31							758.87	758.82						
Bankfull Width (ft)	9.3	10.4							8.3	8.3							11.8	12.2							11.9	13.2						
Floodprone Width (ft)									69+	69+							65+	65+							72+	72+						
Bankfull Mean Depth (ft)	0.8	0.9							0.7	0.7							0.9	0.7							0.8	0.7						
Bankfull Max Depth (ft)	1.5	1.8							1.2	1.3							1.3	1.3							1.2	1.4						
Bankfull Cross-Sectional Area (ft ²)	7.6	8.9							6.1	6.1							10.2	9.0							9.1	9.5						
Bankfull Width/Depth Ratio	11.4	12.0							11.3	11.5							13.6	16.4							15.6	18.2						
Bankfull Entrenchment Ratio									8.3+	8.2+							5.5+	5.3+							6.1+	5.5+						
Bankfull Bank Height Ratio									1.0	1.0							1.0	0.9							1.0	1.0						
		UT2 F	Reach 2	Cross-	Section	18, Po	ol			UT	2A Cro	ss-Sect	ion 19,	Riffle				U.	T2A Cro	oss-Sect	tion 20,	Pool				UT	2A Cro	ss-Sect	ion 21,	Riffle		
Dimension and Substrate ¹	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
bankfull elevation	758.62	758.70							763.99	763.94							761.60	761.65							760.53	760.46						
low bank height elevation	758.62	758.70							763.99	763.94							761.60	761.65							760.53	760.46						
Bankfull Width (ft)	15.2	16.3							5.4	5.5							6.9	6.6							5.7	5.8						
Floodprone Width (ft)									57+	57+												-	-		51+	51+						
Bankfull Mean Depth (ft)	1.4	1.5							0.4	0.4							0.6	0.6							0.4	0.3						
Bankfull Max Depth (ft)	2.5	2.6							0.5	0.6							1.2	1.2							0.7	0.6						
Bankfull Cross-Sectional Area (ft ²)	21.8	24.0							1.9	2.0							4.1	3.7							2.4	2.0						
Bankfull Width/Depth Ratio	10.6	11.1							15.2	15.0							11.6	11.7							13.6	17.2						
Bankfull Entrenchment Ratio									10.5+	10.4+															9.0+	8.8+						
Bankfull Bank Height Ratio									1.0	1.0															1.0	0.8						
		U	T2A Cro	oss-Seci	tion 22,	Pool																										
Dimension and Substrate ¹	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7																								
bankfull elevation	760.53	760.60																														
low bank height elevation	760.53	760.60																														
Bankfull Width (ft)	7.2	9.3																														
Floodprone Width (ft)																																
Bankfull Mean Depth (ft)	0.6	0.5																														
Bankfull Max Depth (ft)	1.1	1.1																														
Bankfull Cross-Sectional Area (ft ²)	4.3	4.8																														
Bankfull Width/Depth Ratio	12.1	18.1																														
Bankfull Entrenchment Ratio																																
Bankfull Bank Height Ratio																																

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

Table 12c. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

West Side (UT2B & UT3)

		U	T2B Cro	oss-Sect	tion 23,	, Pool				UT	2B Cro	ss-Sect	ion 24,	Riffle				U	T2B Cro	ss-Sect	ion 25,	Riffle				UT	2B Cro	oss-Sect	tion 26,	Pool		
Dimension and Substrate ¹	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
bankfull elevation	761.34	761.26							761.16	761.07							760.67	760.61							760.71	760.69						
low bank height elevation	761.34	761.26							761.16	761.07							760.67	760.61							760.71	760.69						
Bankfull Width (ft)	9.9	10.1							9.6	7.9							7.2	6.9							12.2	12.0						
Floodprone Width (ft)									66+	66+							56+	56+														
Bankfull Mean Depth (ft)	0.9	0.8							0.5	0.5							0.5	0.5							1.3	1.2						
Bankfull Max Depth (ft)	1.6	1.6							0.8	0.7							0.8	0.8							2.6	2.2						
Bankfull Cross-Sectional Area (ft ²)	8.8	8.4							4.3	3.6							3.9	3.7							15.8	14.0						
Bankfull Width/Depth Ratio	11.2	12.1							21.1	17.4							13.4	12.9							9.4	10.3						
Bankfull Entrenchment Ratio									6.9+	8.3+							7.8+	8.2+														
Bankfull Bank Height Ratio									1.0	0.9							1.0	1.0														
		UT3 F	Reach 1	Cross-	Section	27, Po	ol			UT3 R	each 1	Cross-S	Section	28, Rif	fle			UT3 F	Reach 2	Cross-S	Section :	29, Riff	le			UT3 R	each 2	Cross-	Section	30, Po	ol	
Dimension and Substrate ¹	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
bankfull elevation	766.07	766.11							765.76	765.79							759.75	759.84							759.40	759.49						\square
low bank height elevation	766.07	766.11							765.76	765.79							759.75	759.84							759.40	759.49						
Bankfull Width (ft)	16.0	16.7							13.7	13.3							16.7	17.0							18.7	19.0						
Floodprone Width (ft)									73+	73+							76+	76+														
Bankfull Mean Depth (ft)	1.4	1.4							0.9	0.9							1.0	1.0							1.4	1.4						
Bankfull Max Depth (ft)	2.6	2.7							1.5	1.5							1.9	1.8							2.6	2.9						
Bankfull Cross-Sectional Area (ft ²)	21.7	23.0							12.8	12.3							16.5	16.7							26.3	26.6						
Bankfull Width/Depth Ratio	11.9	12.1							14.7	14.3							17.0	17.2							13.3	13.6						
Bankfull Entrenchment Ratio									5.3+	5.5+							4.5+	4.5+														
Bankfull Bank Height Ratio									1.0	1.0							1.0	1.0														
		UT3 R	leach 3	Cross-S	ection	31, Rif	fle			UT3 R	each 3	Cross-	Section	i 32, Po	ol																	
Dimension and Substrate ¹	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7																
bankfull elevation	758.39	758.19							758.36	758.21																						
low bank height elevation	758.39	758.19							758.36	758.21																						
Bankfull Width (ft)	19.2	19.1							25.8	26.9																						
Floodprone Width (ft)	71+	71+																														
Bankfull Mean Depth (ft)	1.0	0.9							1.8	1.7																						
Bankfull Max Depth (ft)	1.9	1.9							3.8	3.7																						
Bankfull Cross-Sectional Area (ft ²)	19.5	17.8							45.8	46.1																						
Bankfull Width/Depth Ratio	19.0	20.5							14.5	15.8																						
Bankfull Entrenchment Ratio	3.7+	3.7+																														
Bankfull Bank Height Ratio	1.0	1.0															1															

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

Table 13a. Monitoring Data - Stream Reach Data Summary

Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 1 - 2019

UT1 Reach 1

Parameter	As-Built,	/Baseline	М	Y1	N	/1Y2	N	/IY3	N	1Y4	м	Y5	N	1Y6	м	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ³																
Bankfull Width (ft)	6	i.9	7	.0												
Floodprone Width (ft)	2	29	2	.7												
Bankfull Mean Depth (ft)	0).6	0	.5												
Bankfull Max Depth (ft)	1	0	0	.9												
Bankfull Cross-sectional Area (ft ²)	4	.2	3	.5												
Width/Depth Ratio	1:	1.5	13	3.9												
Entrenchment Ratio	4	.2	3	.8												
Bank Height Ratio	1	0	0	.9												
D ₅₀ (mm)	59	9.6														
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	N/A ¹	N/A ¹														
Pool Length (ft)	· ·	<u> </u>														
Pool Max Depth (ft)	1.1	3.0														
Pool Spacing (ft)	5	76														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	N	$/A^2$														
Radius of Curvature (ft)	N	/A ²														
Rc/Bankfull Width (ft/ft)	N	/A ²														
Meander Length (ft)	N,	/A ²														
Meander Width Batio	N	/A ²														
Substrate, Bed and Transport Parameters	,															
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	0.4/1.8/3	33.9/108/	0.6/9.4/2	1.3/84.1/												
	156.	5/256	137.0	0/256												
Reach Shear Stress (Competency) lb/ft ²	1.	.97														
Max part size (mm) mobilized at bankfull	9	97														
Stream Power (Capacity) W/m ²																
Additional Reach Parameters			-													
Drainage Area (SM)	0.	.07														
Watershed Impervious Cover Estimate (%)	3	8%														
Rosgen Classification	4	4														
Bankfull Velocity (fps)	4	.8														
Bankfull Discharge (cfs)	20	0.2														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)																
Max Q-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	9	00														
Sinuosity																
Bankfull/Channel Slope (ft/ft)	0.0	222														

¹UT1 Reach 1 riffle slopes were not calculated because this reach is comprised of a series of rock steps and cascades.

²Pattern data is not applicable for A-type and B-type channels

³MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13b. Monitoring Data - Stream Reach Data Summary Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT1 Reach 2A

Parameter	As-Built,	/Baseline	М	Y1	Π	/IY2	r	VIY3	N	1Y4	м	Y5	N	мү6	N	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ²																
Bankfull Width (ft)	7	.3	8.1	9.2												
Floodprone Width (ft)	46	65+	46	65+												
Bankfull Mean Depth (ft)	0	.6	0.6	0.7												
Bankfull Max Depth (ft)	0.9	1.0	1.1	1.2												
Bankfull Cross-sectional Area (ft ²)	4.5	4.6	5.1	5.3												
Width/Depth Ratio	11.5	11.8	12.4	16.4												
Entrenchment Ratio	6.3	9.0+	5.0	8.1+												
Bank Height Ratio	1	0	1.	.1												
D ₅₀ (mm)	37.0	37.9														
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.003	0.068														
Pool Length (ft)																
Pool Max Depth (ft)	1.3	2.8														
Pool Spacing (ft)	6	51														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	N/	$/A^1$														
Radius of Curvature (ft)	N/	$/A^1$														
Rc/Bankfull Width (ft/ft)	N	$/A^1$														
Meander Length (ft)	, N/	/A ¹														
Meander Width Ratio	N/	$/A^1$														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	0.3/14.1/2	21.6/67.2/ /362	0.3/6.7/1 128/	9.9/75.9/ ′256												
Reach Shear Stress (Competency) Ib/ft ²	1.06	1.08	-7		1						1					
Max part size (mm) mobilized at bankfull	52	53														
Stream Power (Capacity) W/m ²																
Additional Reach Parameters																
Drainage Area (SM)	0.	.12														
Watershed Impervious Cover Estimate (%)	3	\$%														
Rosgen Classification	E	34														
Bankfull Velocity (fps)	3.9	4.0														
Bankfull Discharge (cfs)	17.7	18.3														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)																
Max Q-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	1,7	746														
Sinuosity																
Bankfull/Channel Slope (ft/ft)	0.0	292														

¹Pattern data is not applicable for A-type and B-type channels

²MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13c. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT1 Reach 2B

Parameter	As-Built,	/Baseline	M	Y1	I	MY2	1	/IY3	N	1Y4	м	Y5	N	1Y6	N	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ¹																
Bankfull Width (ft)	10.3	10.5	10.1	11.5									1			
Floodprone Width (ft)	49+	68+	49+	68+												
Bankfull Mean Depth (ft)	0	.8	0.7	0.8												
Bankfull Max Depth (ft)	1.2	1.3	1.3	1.4												
Bankfull Cross-sectional Area (ft ²)	7.9	8.5	7.5	8.9												
Width/Depth Ratio	12.9	13.3	13.7	15.0										-		-
Entrenchment Ratio	4.7+	6.6+	4.3+	6.7+												
Bank Height Ratio	1	0	1.	.0												
 D ₅₀ (mm)	35.6	45.0														
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.013	0.072														
Pool Length (ft)																
Pool Max Depth (ft)	1.8	3.1														
Pool Spacing (ft)	18	145														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	31	67														
Radius of Curvature (ft)	20	38														
Rc/Bankfull Width (ft/ft)	1.9	3.6														
Meander Length (ft)	102	190														
Meander Width Ratio	3.0	6.4														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
	0.3/0.4/2	2.6/59.2/	0.3/1.8/2	15.2/87/												
$D_{16}/D_{35}/D_{50}/D_{84}/D_{95}/D_{100}$	104.7	7/362	190.9	/256												
Reach Shear Stress (Competency) lb/ft ²	0.85	0.88														
Max part size (mm) mobilized at bankfull	42	43														
Stream Power (Canacity) W/m ²																
Additional Reach Parameters																
Drainage Area (SM)	0.	32														
Watershed Impervious Cover Estimate (%)	3	%														
Rosgen Classification	(.4														
Bankfull Velocity (fps)	4.1	4.2														
Bankfull Discharge (cfs)	32.7	36.2														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)	-															
Max Q-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	1,3	368														
Sinuosity	1.	25														
Bankfull/Channel Slope (ft/ft)	0.0	182														

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13d. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT1 Reach 3

Parameter	As-Built/	/Baseline	M	Y1	N	1Y2	М	Y3	Μ	IY4	M	/5	N	1Y6	м	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ¹																
Bankfull Width (ft)	11.3	12.5	10.8	11.6												
Floodprone Width (ft)	60+	68+	60+	68+												
Bankfull Mean Depth (ft)	0	.7	0.7	0.8												
Bankfull Max Depth (ft)	1	.1	1.1	1.3												
Bankfull Cross-sectional Area (ft ²)	8.3	8.7	7.7	8.3												
Width/Depth Ratio	15.5	18.0	14.1	17.4												
Entrenchment Ratio	5.3+	5.4+	5.5+	5.8+												
Bank Height Ratio	1	.0	0.9	1.0												
D ₅₀ (mm)	41.6	47.4														
Profile							1								1	
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.013	0.055														
Pool Length (ft)																
Pool Max Depth (ft)	1.8	3.7														
Pool Spacing (ft)	41	129														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	35	71														
Radius of Curvature (ft)	19	38														
Rc/Bankfull Width (ft/ft)	1.7	3.0														
Meander Length (ft)	102	196														
Meander Width Ratio	3.1	5.7														
Substrate, Bed and Transport Parameters	-															
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
	0.3/16/2	5.6/62.4/	3.2/18.3/2	8.2/62.7/												
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	113.8	3/180	101.2	/256												
Beach Shear Stress (Competency) lb/ft ²	0.65	0.68		,			I								I	
Max part size (mm) mobilized at bankfull	32	33														
Stream Power (Capacity) W/m ²	52															
Additional Reach Parameters																
Drainage Area (SM)	0.4	44														
Watershed Impervious Cover Estimate (%)	3	%														
Bosgen Classification	C	4														
Bankfull Velocity (fns)	37	3.8														
Bankfull Discharge (cfs)	30.4	31.0														
O-NEE regression (2-vr)		0110														
O-USGS extrapolation (1.2-yr)																
Max O-Mannings																
Valley Slope (ft/ft)																
Channel Thalweg Length (ft)	1.6	541														
Sinuosity	1	30														
Bankfull/Channel Slope (ft/ft)	0.0	153														

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13e. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT2 Reach 1

Parameter	As-Built/	Baseline	MY1	I	МҮ2	N	1Y3	N	1¥4	M	Y5	N	1Y6	м	Y7
	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ²															
Bankfull Width (ft)	8	3	8.3												
Floodprone Width (ft)	69)+	69+												
Bankfull Mean Depth (ft)	0.	7	0.7												
Bankfull Max Depth (ft)	1.	2	1.3												
Bankfull Cross-sectional Area (ft ²)	6.	1	6.1										I		
Width/Depth Ratio	11	.3	11.5												
Entrenchment Ratio	8.	3+	8.2+												
Bank Height Ratio	1.	0	1.0												
D ₅₀ (mm)	26	.9													
Profile															
Riffle Length (ft)															
Riffle Slope (ft/ft)	0.006	0.034													
Pool Length (ft)															
Pool Max Depth (ft)	1.2	2.5													
Pool Spacing (ft)	15	78													
Pool Volume (ft ³)															
Pattern															
Channel Beltwidth (ft)	N/	A ¹													
Radius of Curvature (ft)	N/	A ¹													
Rc/Bankfull Width (ft/ft)	, N/	A ¹													
Meander Length (ft)	N/	A^1													
Meander Width Ratio	N/	A ¹													
Substrate, Bed and Transport Parameters															
Ri%/Ru%/P%/G%/S%															
SC%/Sa%/G%/C%/B%/Be%															
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	SC/SC/0 90/	5/47.3/ 128	3.2/18.3/28.2/62.7/ 101.2/256												
Reach Shear Stress (Competency) lb/ft ²	0.1	79													
Max part size (mm) mobilized at bankfull	3	9													
Stream Power (Capacity) W/m ²															
Additional Reach Parameters															
Drainage Area (SM)	0.	14													
Watershed Impervious Cover Estimate (%)	1	%													
Rosgen Classification	В	4													
Bankfull Velocity (fps)	3.	9													
Bankfull Discharge (cfs)	24	.0													
Q-NFF regression (2-yr)															
Q-USGS extrapolation (1.2-yr)															
Max Q-Mannings															
Valley Slope (ft/ft)															
Channel Thalweg Length (ft)	62	23													
Sinuosity	1.	10													
Bankfull/Channel Slope (ft/ft)	0.0	180													

¹Pattern data is not applicable for B-type channels

²MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13f. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT2 Reach 2

Parameter	As-Built,	/Baseline	м	Y1	N	/1Y2	I	MY3	N	IY4	м	Y5	N	1Y6	N	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ¹																
Bankfull Width (ft)	11.8	11.9	12.2	13.2												
Floodprone Width (ft)	65+	72+	65+	72+												
Bankfull Mean Depth (ft)	0.8	0.9	0	.7												
Bankfull Max Depth (ft)	1.2	1.3	1.3	1.4												
Bankfull Cross-sectional Area (ft ²)	9.1	10.2	9.0	9.5												
Width/Depth Ratio	13.6	15.6	16.4	18.2												
Entrenchment Ratio	5.5+	6.1+	5.3+	5.5+												
Bank Height Ratio	1	0	0.9	1.0												
D ₅₀ (mm)	25.4	33.4														
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.004	0.035														
Pool Length (ft)																
Pool Max Depth (ft)	2.1	3.2														
Pool Spacing (ft)	45	127														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	39	88														
Radius of Curvature (ft)	20	39														
Rc/Bankfull Width (ft/ft)	1.7	3.3														
Meander Length (ft)	72	154														
Meander Width Ratio	3.3	7.4														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
	SC/SC/	SC/42/	SC/0.16/	9.4/52.7/												
$D_{16}/D_{35}/D_{50}/D_{84}/D_{95}/D_{100}$	71.7	/180	86.3/	>2048												
Reach Shear Stress (Competency) lb/ft ²	0.33	0.38														
Max part size (mm) mobilized at bankfull	16	19														
Stream Power (Capacity) W/m ²																
Additional Reach Parameters																
Drainage Area (SM)	0.	26														
Watershed Impervious Cover Estimate (%)	1	.%														
Rosgen Classification	(:4														
Bankfull Velocity (fps)	2.6	2.8														
Bankfull Discharge (cfs)	23.6	28.9														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)																
Max Q-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	1,0	080														
Sinuosity	1.	.30														
Bankfull/Channel Slope (ft/ft)	0.0	072														

¹/MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13g. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT2A

Parameter	As-Built,	Baseline	М	Y1	N	/1Y2	Μ	1Y3	N	IY4	M	7 5	M	IY6	М	47
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ¹																
Bankfull Width (ft)	5.4	5.7	5.5	5.8												
Floodprone Width (ft)	51+	57+	51+	57+												
Bankfull Mean Depth (ft)	0.4	0.4	0.3	0.4												
Bankfull Max Depth (ft)	0.5	0.7	0	.6												
Bankfull Cross-sectional Area (ft ²)	1.9	2.4	2	.0										-		
Width/Depth Ratio	13.6	15.2	15.0	17.2												
Entrenchment Ratio	9.0+	10.5+	8.8+	10.4+												
Bank Height Ratio	1	.0	0.8	1.0												
D ₅₀ (mm)	21.0	28.1														
Profile													1		1	
Riffle Length (ft)		l l														
Riffle Slope (ft/ft)	0.001	0.046														
Pool Length (ft)																
Pool Max Depth (ft)	0.9	1.3														
Pool Spacing (ft)	18	58														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	19	44														
Radius of Curvature (ft)	10	19														
Rc/Bankfull Width (ft/ft)	1.9	3.3														
Meander Length (ft)	36	77														
Meander Width Ratio	3.5	7.7														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	SC/SC/0 90/	.5/42.5/ 180	SC/0.09/ 139.4	5.6/75.9/ /256												
Reach Shear Stress (Competency) lh/ft ²													1		I	
Max part size (mm) mobilized at bankfull																
Stream Dewor (Conscitu) W/m ²																
Additional Boach Darameters																
	0	02														
Watershed Impervious Cover Estimate (%)	-															
Rosgen Classification	(`4														
Bankfull Velocity (fos)	19	21														
Bankfull Discharge (cfs)	3.7	5.1														
O-NEE regression (2-yr)	5.7	5.1														
Q-USGS extrapolation (1.2-yr)																
Max O-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	6	55														
Sinuosity	1.	20														
Bankfull/Channel Slope (ft/ft)	0.0	110														

¹/MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13h. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT2B

Parameter	As-Built,	/Baseline	М	Y1	N	/IY2	м	Y3	м	IY4	M	/ 5	м	Y6	М	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ¹						•				•				•		
Bankfull Width (ft)	7.2	9.6	6.9	7.9												
Floodprone Width (ft)	56+	66+	56+	66+												
Bankfull Mean Depth (ft)	0.5	0.5	0	.5												
Bankfull Max Depth (ft)	0.8	0.8	0.7	0.8												
Bankfull Cross-sectional Area (ft ²)	3.9	4.3	3.6	3.7												
Width/Depth Ratio	13.4	21.1	12.9	17.4												
Entrenchment Ratio	6.9+	7.8+	8.2+	8.3+												
Bank Height Ratio	1	.0	0.9	1.0												
D ₅₀ (mm)	25.1	30.6														
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.001	0.037														
Pool Length (ft)																
Pool Max Depth (ft)	1.5	2.7														
Pool Spacing (ft)	7	58														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	26	60														
Radius of Curvature (ft)	14	23														
Rc/Bankfull Width (ft/ft)	1.9	2.4														
Meander Length (ft)	49	105														
Meander Width Ratio	3.6	6.3														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
$D_{16}/D_{35}/D_{50}/D_{84}/D_{95}/D_{100}$	SC/SC/0 82.6	.4/43.3/ /256	0.17/17.58, 86.7	/26.1/59.0/ /180												
Reach Shear Stress (Competency) lb/ft ²	-															
Max part size (mm) mobilized at bankfull	-															
Stream Power (Capacity) W/m ²																
Additional Reach Parameters																
Drainage Area (SM)	0.	05														
Watershed Impervious Cover Estimate (%)	-															
Rosgen Classification	(4														
Bankfull Velocity (fps)	2.3	2.6														
Bankfull Discharge (cfs)	10.1	10.1														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)																
Max Q-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	7	76														
Sinuosity	1.	20														
Bankfull/Channel Slope (ft/ft)	0.0	115														

¹/MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13i. Monitoring Data - Stream Reach Data Summary Lone Hickory Mitigation Site DMS Project No. 97135

Monitoring Year 1 - 2019

UT3 Reach 1

Parameter	As-Built,	/Baseline	MY1	r	MY2	N	1Y3	М	¥4	M	/ 5	N	1Y6	м	Y7
	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ²															
Bankfull Width (ft)	13	3.7	13.3												
Floodprone Width (ft)	7	3+	73+												
Bankfull Mean Depth (ft)	0	.9	0.9												
Bankfull Max Depth (ft)	1	.5	1.5												
Bankfull Cross-sectional Area (ft ²)	12	2.8	12.3												
Width/Depth Ratio	14	1.7	14.3												
Entrenchment Ratio	5.	3+	5.5+												
Bank Height Ratio	1	.0	1.0												
D ₅₀ (mm)	50	0.0													
Profile															
Riffle Length (ft)															
Riffle Slope (ft/ft)	0.001	0.023													
Pool Length (ft)															
Pool Max Depth (ft)	2.8	3.9													
Pool Spacing (ft)	64	163													
Pool Volume (ft ³)															
Pattern															
Channel Beltwidth (ft)	N,	/A ¹													
Radius of Curvature (ft)	N,	/A ¹													
Rc/Bankfull Width (ft/ft)	N,	/A ¹													
Meander Length (ft)	N,	/A ¹													
Meander Width Ratio	N,	/A ¹													
Substrate, Bed and Transport Parameters															
Ri%/Ru%/P%/G%/S%															
SC%/Sa%/G%/C%/B%/Be%															
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	SC/0.2/0 107 3).4/59.2/ 3/180	SC/2.8/17.1/74.5/ 117.2/180												
Boach Shoar Strocs (Compatancy) lh/ft ²	0	42	11/12/100									1			
Reach Shear Stress (competency) Ib/It		1													
	-														
Additional Reach Parameters															
	0	63													
Watershed Impervious Cover Estimate (%)	2	%													
Rosgen Classification	B	4c													
Bankfull Velocity (fns)	3	0													
Bankfull Discharge (cfs)	3	3.6													
O-NEE regression (2-vr)	-														
O-USGS extrapolation (1.2-yr)															
Max O-Mannings															
Valley Slope (ft/ft)	-														
Channel Thalweg Length (ft)	7	79													
Sinuositv	1.	10													
Bankfull/Channel Slope (ft/ft)	0.0	075													

¹Pattern data is not applicable for B-type channels

²MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13j. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT3 Reach 2

Parameter	As-Built/Baseline		MY1		MY2		MY3		MY4		MY5		MY6		MY7	
	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Dimension and Substrate - Riffle ¹																
Bankfull Width (ft)	16	5.7	17.0													
Floodprone Width (ft)	76+		76+													
Bankfull Mean Depth (ft)	1.0		1.0			1										
Bankfull Max Depth (ft)	1.9		1.8													
Bankfull Cross-sectional Area (ft ²)	16.5		16.7													
Width/Depth Ratio	17.0		17.2													
Entrenchment Ratio	4.5+		4.5+										-			
Bank Height Ratio ¹	1.0		1.0													
D ₅₀ (mm)	31.2															
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.002	0.012														
Pool Length (ft)																
Pool Max Depth (ft)	2.5	4.1														
Pool Spacing (ft)	53	186														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	57	130														
Radius of Curvature (ft)	29	57														
Rc/Bankfull Width (ft/ft)	1.7	3.4														
Meander Length (ft)	105	227														
Meander Width Ratio	3.4	7.8														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	SC/SC/0.2/41.6/		SC/SC/0.2/60.4/ 113 8/256													
Boach Shoar Strocs (Compotency) lh/ft ²	01.5/100		11010/200					<u> </u>								
Max part size (mm) mobilized at bankfull																
Stream Power (Capacity) W/m																
	0	62														
Drainage Area (SM)	0.	05														
Watershed Impervious Cover Estimate (%)	2	70 `A														
Rosgen Classification	1	19														
Bankfull Velocity (Ips)	2/	.9	-													
Banktuli Discharge (Cfs)	5.	1														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)																
iviax Q-Mannings																
Channel Thelward Larath (ft)	-	150														
Channel Thaiweg Length (ft)	1,. 1	1,159														
Sinuosity	1.40															
Dankfull/Channel Slope (Tt/Tt)	0.0	021														

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Table 13k. Monitoring Data - Stream Reach Data SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

UT3 Reach 3

Parameter	As-Built/Baseline		MY1		MY2		MY3		MY4		MY5		MY6		MY7	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle ¹																
Bankfull Width (ft)	19.2		19.	1												
Floodprone Width (ft)	71+		71+											-		
Bankfull Mean Depth (ft)	1.0		0.9													
Bankfull Max Depth (ft)	1.9		1.9													
Bankfull Cross-sectional Area (ft ²)	19.5		17.8													
Width/Depth Ratio	19.0		20.5													
Entrenchment Ratio	3.7+		3.7+							-						
Bank Height Ratio ¹	1.0		1.0													
D ₅₀ (mm)	47.0															
Profile																
Riffle Length (ft)																
Riffle Slope (ft/ft)	0.0002	0.005														
Pool Length (ft)																
Pool Max Depth (ft)	3.3	3.9														
Pool Spacing (ft)	83	180														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	67	152														
Radius of Curvature (ft)	34	67														
Rc/Bankfull Width (ft/ft)	1.8	3.5														
Meander Length (ft)	124	266														
Meander Width Ratio	3.5	7.9														
Substrate, Bed and Transport Parameters																
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
D ₁₆ /D ₃₅ /D ₅₀ /D ₈₄ /D ₉₅ /D ₁₀₀	SC/SC/SC/64/		SC/SC/SC	2/32.0/												
	151.0	5/ 502	151.8/	302					<u> </u>		ļ		ļ.		<u> </u>	
Reach Shear Stress (Competency) Ib/ft																
Iviax part size (mm) mobilized at bankfull																
Stream Power (Capacity) W/m ²																
Additional Reach Parameters																
Drainage Area (SM)	0.	88														
Watershed Impervious Cover Estimate (%)	2	%														
Rosgen Classification	C4															
Bankfull Velocity (fps)	0.8															
Bankfull Discharge (cfs)	16	j.0														
Q-NFF regression (2-yr)																
Q-USGS extrapolation (1.2-yr)																
Max Q-Mannings																
Valley Slope (ft/ft)	-															
Channel Thalweg Length (ft)	7	54														
Sinuosity	1.20															
Bankfull/Channel Slope (ft/ft)	0.0	005														

¹MY1-MY7 Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section dimension parameters were calculated based on the current low bank height.

SC: Silt/Clay <0.062 mm diameter particles

(---): Data was not provided

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 1 - UT1 Reach 1

Bankfull Dimensions

- 7.3 x-section area (ft.sq.)
- 8.5 width (ft)
- mean depth (ft) 0.9
- 1.6 max depth (ft)
- 9.1 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- width-depth ratio 9.9

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 3.5 x-section area (ft.sq.)
- 7.0 width (ft)
- 0.5 mean depth (ft)
- 0.9 max depth (ft)
- 7.2 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 13.9 width-depth ratio
- 26.5 W flood prone area (ft)
- 3.8 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 3 - UT1 Reach 2A

Bankfull Dimensions

- 12.1 x-section area (ft.sq.)
- 9.9 width (ft)
- mean depth (ft) 1.2
- 2.5 max depth (ft)
- 11.4 wetted perimeter (ft)
- hydraulic radius (ft) 1.1
- 8.0
- width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 5.1 x-section area (ft.sq.)
- 9.2 width (ft)
- 0.6 mean depth (ft)
- 1.1 max depth (ft)
- 9.5 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 16.4 width-depth ratio
- 45.6 W flood prone area (ft)
- 5.0 entrenchment ratio
- 1.1 low bank height ratio
- 1.1 IOW Bank neight ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 5 - UT1 Reach 2A

Bankfull Dimensions

- 5.3 x-section area (ft.sq.)
- 8.1 width (ft)
- 0.7 mean depth (ft)
- 1.2 max depth (ft)
- 8.6 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 12.4 width-depth ratio
- 65.4 W flood prone area (ft)
- 8.1 entrenchment ratio
-
- 1.1 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 6 - UT1 Reach 2A

Bankfull Dimensions

- 13.6 x-section area (ft.sq.)
- 9.5 width (ft)
- mean depth (ft) 1.4
- 2.5 max depth (ft)
- 11.1 wetted perimeter (ft)
- hydraulic radius (ft) 1.2
- 6.6 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 7.5 x-section area (ft.sq.)
- 10.1 width (ft)
- 0.7 mean depth (ft)
- 1.3 max depth (ft)
- 10.6 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 13.7 width-depth ratio
- 68.0 W flood prone area (ft)
- 6.7 entrenchment ratio
-
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 8 - UT1 Reach 2B

Bankfull Dimensions

- 12.8 x-section area (ft.sq.)
- 13.0 width (ft)
- mean depth (ft) 1.0
- max depth (ft) 2.1
- 14.6 wetted perimeter (ft)
- hydraulic radius (ft) 0.9
- 13.2 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 8.9 x-section area (ft.sq.)
- 11.5 width (ft)
- 0.8 mean depth (ft)
- 1.4 max depth (ft)
- 12.1 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 15.0 width-depth ratio
- 49.1 W flood prone area (ft)
- 4.3 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 8.3 x-section area (ft.sq.)
- 10.8 width (ft)
- 0.8 mean depth (ft)
- 1.3 max depth (ft)
- 11.2 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 14.1 width-depth ratio
- 59.9 W flood prone area (ft)
- 5.5 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 11 - UT1 Reach 3

Bankfull Dimensions

- 7.7 x-section area (ft.sq.)
- 11.6 width (ft)
- 0.7 mean depth (ft)
- 1.1 max depth (ft)
- 11.9 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 17.4 width-depth ratio
- 67.7 W flood prone area (ft)
- 5.8 entrenchment ratio
- 0.9 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 12 - UT1 Reach 3

Bankfull Dimensions

- 17.8 x-section area (ft.sq.)
- 16.2 width (ft)
- mean depth (ft) 1.1
- 2.4 max depth (ft)
- 17.7 wetted perimeter (ft)
- hydraulic radius (ft) 1.0
- 14.7 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 13 - UT1 Reach 3

Bankfull Dimensions

- 22.4 x-section area (ft.sq.)
- 16.3 width (ft)
- mean depth (ft) 1.4
- 3.0 max depth (ft)
- 18.8 wetted perimeter (ft)
- hydraulic radius (ft) 1.2
- width-depth ratio 11.9

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 14 - UT2 Reach 1

Bankfull Dimensions

- 8.9 x-section area (ft.sq.)
- 10.4 width (ft)
- mean depth (ft) 0.9
- 1.8 max depth (ft)
- 11.3 wetted perimeter (ft)
- 0.8 hydraulic radius (ft)
- width-depth ratio 12.0

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 15 - UT2 Reach 1

Bankfull Dimensions

- 6.1 x-section area (ft.sq.)
- 8.3 width (ft)
- 0.7 mean depth (ft)
- 1.3 max depth (ft)
- 8.8 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 11.5 width-depth ratio
- 68.7 W flood prone area (ft)
- 8.2 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 9.0 x-section area (ft.sq.)
- 12.2 width (ft)
- 0.7 mean depth (ft)
- max depth (ft) 1.3
- 12.5 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 16.4 width-depth ratio
- 64.7 W flood prone area (ft)
- entrenchment ratio 5.3
- 0.9 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 17 - UT2 Reach 2

Bankfull Dimensions

- 9.5 x-section area (ft.sq.)
- 13.2 width (ft)
- 0.7 mean depth (ft)
- 1.4 max depth (ft)
- 13.5 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 18.2 width-depth ratio
- 72.2 W flood prone area (ft)
- 5.5 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 **Monitoring Year 1 - 2019**

Cross-Section 18 - UT2 Reach 2

Bankfull Dimensions

- 24.0 x-section area (ft.sq.)
- 16.3 width (ft)
- 1.5 mean depth (ft)
- 2.6 max depth (ft)
- 17.4 wetted perimeter (ft)
- 1.4 hydraulic radius (ft)
- 11.1 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 2.0 x-section area (ft.sq.)
- 5.5 width (ft)
- 0.4 mean depth (ft)
- 0.6 max depth (ft)
- 5.6 wetted perimeter (ft)
- 0.4 hydraulic radius (ft)
- 15.0 width-depth ratio
- 56.9 W flood prone area (ft)
- 10.4 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 3.7 x-section area (ft.sq.)
- 6.6 width (ft)
- mean depth (ft) 0.6
- max depth (ft) 1.2
- 7.0 wetted perimeter (ft)
- hydraulic radius (ft) 0.5
- 11.7
- width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 2.0 x-section area (ft.sq.)
- 5.8 width (ft)
- 0.3 mean depth (ft)
- 0.6 max depth (ft)
- 6.0 wetted perimeter (ft)
- 0.3 hydraulic radius (ft)
- 17.2 width-depth ratio
- 51.4 W flood prone area (ft)
- 8.8 entrenchment ratio
- 0.8 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 4.8 x-section area (ft.sq.)
- 9.3 width (ft)
- mean depth (ft) 0.5
- max depth (ft) 1.1
- 9.6 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 18.1 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 23 - UT2B

Bankfull Dimensions

- 8.4 x-section area (ft.sq.)
- 10.1 width (ft)
- mean depth (ft) 0.8
- max depth (ft) 1.6
- 10.7 wetted perimeter (ft)
- hydraulic radius (ft) 0.8
- 12.1
- width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 3.6 x-section area (ft.sq.)
- 7.9 width (ft)
- 0.5 mean depth (ft)
- 0.7 max depth (ft)
- 8.1 wetted perimeter (ft)
- 0.4 hydraulic radius (ft)
- 17.4 width-depth ratio
- 65.9 W flood prone area (ft)
- 8.3 entrenchment ratio
- 0.9 low bank height ratio
- 0.5 Iow bank neight ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

View Downstream

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 3.7 x-section area (ft.sq.)
- 6.9 width (ft)
- 0.5 mean depth (ft)
- 0.8 max depth (ft)
- 7.1 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 12.9 width-depth ratio
- 56.4 W flood prone area (ft)
- 8.2 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 26 - UT2B

Bankfull Dimensions

- 14.0 x-section area (ft.sq.)
- 12.0 width (ft)
- mean depth (ft) 1.2
- 2.2 max depth (ft)
- 12.9 wetted perimeter (ft)
- hydraulic radius (ft) 1.1
- 10.3
- width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 27 - UT3 Reach 1

Bankfull Dimensions

- 23.0 x-section area (ft.sq.)
- 16.7 width (ft)
- 1.4 mean depth (ft)
- 2.7 max depth (ft)
- 17.8 wetted perimeter (ft)
- 1.3 hydraulic radius (ft)
- 12.1 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 12.3 x-section area (ft.sq.)
- 13.3 width (ft)
- 0.9 mean depth (ft)
- 1.5 max depth (ft)
- 13.8 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 14.3 width-depth ratio
- 72.9 W flood prone area (ft)
- 5.5 entrenchment ratio
-
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Bankfull Dimensions

- 16.7 x-section area (ft.sq.)
- 17.0 width (ft)
- 1.0 mean depth (ft)
- 1.8 max depth (ft)
- 17.5 wetted perimeter (ft)
- 1.0 hydraulic radius (ft)
- 17.2 width-depth ratio
- 75.6 W flood prone area (ft)
- 4.5 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 30 - UT3 Reach 2

Bankfull Dimensions

- 26.6 x-section area (ft.sq.)
- 19.0 width (ft)
- 1.4 mean depth (ft)
- 2.9 max depth (ft)
- 20.0 wetted perimeter (ft)
- 1.3 hydraulic radius (ft)
- 13.6 width-depth ratio
- ----

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 31 - UT3 Reach 3

Bankfull Dimensions

- 17.8 x-section area (ft.sq.)
- 19.1 width (ft)
- 0.9 mean depth (ft)
- 1.9 max depth (ft)
- 19.7 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 20.5 width-depth ratio
- 70.8 W flood prone area (ft)
- 3.7 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site NCDMS Project No. 97135 Monitoring Year 1 - 2019

Cross-Section 32 - UT3 Reach 3

Bankfull Dimensions

- 46.1 x-section area (ft.sq.)
- 26.9 width (ft)
- 1.7 mean depth (ft)
- 3.7 max depth (ft)
- 28.5 wetted perimeter (ft)
- 1.6 hydraulic radius (ft)
- 15.8 width-depth ratio

Survey Date: 10/2019 Field Crew: Wildlands Engineering

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT1 R1, Reachwide

Particle Class		Diame	ter (mm)	Particle Count			Reach Summary	
							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	4	5	5	5
	Very fine	0.062	0.125	1	2	3	3	8
_	Fine	0.125	0.250					8
AND	Medium	0.25	0.50	2	5	7	7	15
^י ל	Coarse	0.5	1.0	1	3	4	4	19
	Very Coarse	1.0	2.0		3	3	3	22
	Very Fine	2.0	2.8					22
	Very Fine	2.8	4.0	1		1	1	23
	Fine	4.0	5.6		2	2	2	25
	Fine	5.6	8.0	1	7	8	8	33
NEL	Medium	8.0	11.0	3	1	4	4	37
GRA	Medium	11.0	16.0	4	4	8	8	45
	Coarse	16.0	22.6	2	4	6	6	51
	Coarse	22.6	32	2	5	7	7	58
	Very Coarse	32	45	6	6	12	12	70
	Very Coarse	45	64	4	2	6	6	76
	Small	64	90	10		10	10	86
alt	Small	90	128	7	1	8	8	94
COBL	Large	128	180	4	1	5	5	99
	Large	180	256	1		1	1	100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
0.6						
9.4						
21.3						
84.1						
137.0						
256.0						

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT1 R2A, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	4	5	5	5
	Very fine	0.062	0.125		5	5	5	10
_	Fine	0.125	0.250	2	1	3	3	13
AND	Medium	0.25	0.50	3	4	7	7	20
יל	Coarse	0.5	1.0	1	1	2	2	22
	Very Coarse	1.0	2.0	1	3	4	4	26
	Very Fine	2.0	2.8	1	1	2	2	28
	Very Fine	2.8	4.0		4	4	4	32
	Fine	4.0	5.6		2	2	2	34
	Fine	5.6	8.0		2	2	2	36
VEL	Medium	8.0	11.0	1	1	2	2	38
GRA	Medium	11.0	16.0	2	3	5	5	43
-	Coarse	16.0	22.6	7	4	11	11	54
	Coarse	22.6	32	4	5	9	9	63
	Very Coarse	32	45	5	5	10	10	73
	Very Coarse	45	64	6	1	7	7	80
	Small	64	90	6	2	8	8	88
alt	Small	90	128	6	1	7	7	95
COBL	Large	128	180					95
•	Large	180	256	4	1	5	5	100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	0.3					
D ₃₅ =	6.7					
D ₅₀ =	19.9					
D ₈₄ =	75.9					
D ₉₅ =	128.0					
D ₁₀₀ =	256.0					

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT1 R2B, Reachwide

		Diame	ter (mm)	Particle Count			Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	3	4	4	4
	Very fine	0.062	0.125		2	2	2	6
_	Fine	0.125	0.250		5	5	5	11
AND	Medium	0.25	0.50	2	13	15	15	26
7	Coarse	0.5	1.0		3	3	3	29
	Very Coarse	1.0	2.0	4	3	7	7	36
	Very Fine	2.0	2.8					36
	Very Fine	2.8	4.0					36
	Fine	4.0	5.6	1	1	2	2	38
	Fine	5.6	8.0	1	1	2	2	40
NEL	Medium	8.0	11.0	1	3	4	4	44
GRA	Medium	11.0	16.0	5	2	7	7	51
-	Coarse	16.0	22.6	2	3	5	5	56
	Coarse	22.6	32	2	3	5	5	61
	Very Coarse	32	45	5	2	7	7	68
	Very Coarse	45	64	4	3	7	7	75
	Small	64	90	9	1	10	10	85
alt	Small	90	128	4	1	5	5	90
COBL	Large	128	180	3	1	4	4	94
_	Large	180	256	6		6	6	100
BOULDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	0.3					
D ₃₅ =	1.8					
D ₅₀ =	15.2					
D ₈₄ =	87.0					
D ₉₅ =	190.9					
D ₁₀₀ =	256.0					

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT1 R3, Reachwide

		Diame	ter (mm)	Particle Count			Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		1	1	1	1
	Very fine	0.062	0.125		3	3	3	4
_	Fine	0.125	0.250		1	1	1	5
AND	Medium	0.25	0.50		5	5	5	10
7	Coarse	0.5	1.0		3	3	3	13
	Very Coarse	1.0	2.0		1	1	1	14
	Very Fine	2.0	2.8		1	1	1	15
	Very Fine	2.8	4.0		3	3	3	18
	Fine	4.0	5.6		1	1	1	19
	Fine	5.6	8.0		2	2	2	21
NEL	Medium	8.0	11.0	2	2	4	4	25
GRA	Medium	11.0	16.0	1	4	5	5	30
	Coarse	16.0	22.6	7	6	13	13	43
	Coarse	22.6	32	4	7	11	11	54
	Very Coarse	32	45	10	4	14	14	68
	Very Coarse	45	64	12	5	17	17	85
	Small	64	90	7	1	8	8	93
alt	Small	90	128	6		6	6	99
COBL	Large	128	180					99
	Large	180	256	1		1	1	100
BOULDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Tetrains (mm) D_{16} = 3.2 D_{35} = 18.3 D_{50} = 28.2 D_{84} = 62.7 D_{95} = 101.2 D_{100} = 256.0	Reachwide						
$\begin{array}{c c} D_{16} = & 3.2 \\ \hline D_{35} = & 18.3 \\ \hline D_{50} = & 28.2 \\ \hline D_{84} = & 62.7 \\ \hline D_{95} = & 101.2 \\ \hline D_{100} = & 256.0 \\ \end{array}$	Channel materials (mm)						
$\begin{array}{c c} D_{35} = & 18.3 \\ \hline D_{50} = & 28.2 \\ \hline D_{84} = & 62.7 \\ \hline D_{95} = & 101.2 \\ \hline D_{100} = & 256.0 \end{array}$	D ₁₆ =	3.2					
$\begin{array}{c} D_{50} = & 28.2 \\ \hline D_{84} = & 62.7 \\ \hline D_{95} = & 101.2 \\ \hline D_{100} = & 256.0 \end{array}$	D ₃₅ =	18.3					
$\begin{array}{c c} D_{84} = & 62.7 \\ \hline D_{95} = & 101.2 \\ \hline D_{100} = & 256.0 \end{array}$	D ₅₀ =	28.2					
$D_{95} = 101.2$ $D_{100} = 256.0$	D ₈₄ =	62.7					
D ₁₀₀ = 256.0	D ₉₅ =	101.2					
100	D ₁₀₀ =	256.0					

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT2 R1, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	9	11	11	11
	Very fine	0.062	0.125		12	12	12	23
_	Fine	0.125	0.250		3	3	3	26
AND	Medium	0.25	0.50	2	4	6	6	32
7	Coarse	0.5	1.0	1	8	9	9	41
	Very Coarse	1.0	2.0	6	3	9	9	50
	Very Fine	2.0	2.8					50
	Very Fine	2.8	4.0	1		1	1	50
	Fine	4.0	5.6	1		1	1	51
	Fine	5.6	8.0	2	3	5	5	56
NEL	Medium	8.0	11.0	4	3	7	7	63
GRA	Medium	11.0	16.0	4	2	6	6	69
-	Coarse	16.0	22.6	3	1	4	4	73
	Coarse	22.6	32	5	1	6	6	79
	Very Coarse	32	45	6	1	7	7	86
	Very Coarse	45	64	3		3	3	89
	Small	64	90	4		4	4	93
alt	Small	90	128	4		4	4	97
COBL	Large	128	180	3		3	3	100
	Large	180	256					100
BOULDER	Small	256	362					100
	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	51	50	101	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	0.1					
D ₃₅ =	0.6					
D ₅₀ =	3.3					
D ₈₄ =	40.5					
D ₉₅ =	106.9					
D ₁₀₀ =	180.0					

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT2 R2, Reachwide

Particle Class		Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary	
							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		28	28	27	27
	Very fine	0.062	0.125		6	6	6	33
_	Fine	0.125	0.250		5	5	5	38
AND	Medium	0.25	0.50		7	7	7	45
7	Coarse	0.5	1.0		1	1	1	46
	Very Coarse	1.0	2.0	1	1	2	2	48
	Very Fine	2.0	2.8					48
	Very Fine	2.8	4.0					48
	Fine	4.0	5.6					48
	Fine	5.6	8.0					48
NEL	Medium	8.0	11.0	4		4	4	52
GRA	Medium	11.0	16.0	1	1	2	2	54
	Coarse	16.0	22.6	6	1	7	7	61
	Coarse	22.6	32	10	1	11	11	72
	Very Coarse	32	45	10		10	10	81
	Very Coarse	45	64	6		6	6	87
	Small	64	90	9		9	9	96
alt	Small	90	128	1		1	1	97
COBL	Large	128	180	2		2	2	99
	Large	180	256					99
-	Small	256	362					99
BOULDER	Small	362	512					99
	Medium	512	1024					99
	Large/Very Large	1024	2048					99
BEDROCK	Bedrock	2048	>2048	1		1	1	100
			Total	51	51	102	100	100

Reachwide						
Channel materials (mm)						
D ₁₆ =	Silt/Clay					
D ₃₅ =	0.2					
D ₅₀ =	9.4					
D ₈₄ =	52.7					
D ₉₅ =	86.3					
D ₁₀₀ =	>2048					

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT2A, Reachwide

Particle Class		Diame	ter (mm)	Particle Count			Reach Summary	
							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	27	29	29	29
	Very fine	0.062	0.125		10	10	10	39
	Fine	0.125	0.250		1	1	1	40
AND	Medium	0.25	0.50		5	5	5	45
5'	Coarse	0.5	1.0					45
	Very Coarse	1.0	2.0		2	2	2	47
	Very Fine	2.0	2.8	1		1	1	48
	Very Fine	2.8	4.0	1		1	1	49
	Fine	4.0	5.6		1	1	1	50
	Fine	5.6	8.0					50
NEL	Medium	8.0	11.0	2	3	5	5	55
GRA	Medium	11.0	16.0					55
	Coarse	16.0	22.6	3		3	3	58
	Coarse	22.6	32	7	1	8	8	66
	Very Coarse	32	45	7		7	7	73
	Very Coarse	45	64	6		6	6	79
	Small	64	90	10		10	10	89
alt	Small	90	128	5		5	5	94
COBL	Large	128	180	4		4	4	98
	Large	180	256	2		2	2	100
	Small	256	362					100
OFR	Small	362	512					100
aout	Medium	512	1024					100
V	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide							
Channel materials (mm)							
D ₁₆ =	Silt/Clay						
D ₃₅ =	0.1						
D ₅₀ =	5.6						
D ₈₄ =	75.9						
D ₉₅ =	139.4						
D ₁₀₀ =	256.0						

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT2B, Reachwide

Particle Class		Diame	ter (mm)	Particle Count			Reach Summary	
							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	11	12	12	12
	Very fine	0.062	0.125					12
-	Fine	0.125	0.250		9	9	9	21
AND	Medium	0.25	0.50		2	2	2	23
7	Coarse	0.5	1.0					23
	Very Coarse	1.0	2.0		4	4	4	27
	Very Fine	2.0	2.8					27
	Very Fine	2.8	4.0	1		1	1	28
	Fine	4.0	5.6					28
	Fine	5.6	8.0					28
NEL	Medium	8.0	11.0		2	2	2	30
GRA	Medium	11.0	16.0		2	2	2	32
-	Coarse	16.0	22.6	5	6	11	11	43
	Coarse	22.6	32	13	4	17	17	60
	Very Coarse	32	45	10	4	14	14	74
	Very Coarse	45	64	11	2	13	13	87
	Small	64	90	6	3	9	9	96
alt	Small	90	128	1	1	2	2	98
COBL	Large	128	180	2		2	2	100
	Large	180	256					100
	Small	256	362					100
OFR	Small	362	512					100
20 ¹¹¹	Medium	512	1024					100
V	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide							
Channel materials (mm)							
D ₁₆ =	0.2						
D ₃₅ =	17.6						
D ₅₀ =	26.1						
D ₈₄ =	59.0						
D ₉₅ =	86.7						
D ₁₀₀ =	180.0						

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT3 R1, Reachwide

Particle Class		Diame	ter (mm)	Particle Count			Reach Summary	
							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	1	22	23	23	23
	Very fine	0.062	0.125					23
_	Fine	0.125	0.250		10	10	10	33
AND	Medium	0.25	0.50					33
5'	Coarse	0.5	1.0	1		1	1	34
	Very Coarse	1.0	2.0					34
	Very Fine	2.0	2.8		1	1	1	35
	Very Fine	2.8	4.0	1	5	6	6	41
	Fine	4.0	5.6					41
	Fine	5.6	8.0		1	1	1	42
NEL	Medium	8.0	11.0		4	4	4	46
GRA	Medium	11.0	16.0	3		3	3	49
-	Coarse	16.0	22.6	3	2	5	5	54
	Coarse	22.6	32	3	1	4	4	58
	Very Coarse	32	45	7		7	7	65
	Very Coarse	45	64	13	2	15	15	80
	Small	64	90	7	2	9	9	89
alt	Small	90	128	8		8	8	97
COBL	Large	128	180	3		3	3	100
_	Large	180	256					100
	Small	256	362					100
OFR	Small	362	512					100
COUL	Medium	512	1024					100
V	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide							
Channel materials (mm)							
D ₁₆ =	Silt/Clay						
D ₃₅ =	2.8						
D ₅₀ =	17.1						
D ₈₄ =	74.5						
D ₉₅ =	117.2						
D ₁₀₀ =	180.0						

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT3 R2, Reachwide

		Diame	ter (mm)	Particle Count			Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	5	31	36	36	36
	Very fine	0.062	0.125		12	12	12	48
_	Fine	0.125	0.250		3	3	3	51
AND	Medium	0.25	0.50		1	1	1	52
7	Coarse	0.5	1.0					52
	Very Coarse	1.0	2.0	1		1	1	53
	Very Fine	2.0	2.8					53
	Very Fine	2.8	4.0	1		1	1	54
	Fine	4.0	5.6	2	1	3	3	57
	Fine	5.6	8.0		1	1	1	58
NEL	Medium	8.0	11.0	2		2	2	60
GRA	Medium	11.0	16.0	3	1	4	4	64
-	Coarse	16.0	22.6	5		5	5	69
	Coarse	22.6	32	7		7	7	76
	Very Coarse	32	45	3		3	3	79
	Very Coarse	45	64	6		6	6	85
	Small	64	90	6		6	6	91
alt	Small	90	128	6		6	6	97
COBL	Large	128	180	2		2	2	99
_	Large	180	256	1		1	1	100
	Small	256	362					100
OFR	Small	362	512					100
COUL	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
		Total	50	50	100	100	100	

Reachwide							
Channel materials (mm)							
D ₁₆ =	Silt/Clay						
D ₃₅ =	Silt/Clay						
D ₅₀ =	0.2						
D ₈₄ =	60.4						
D ₉₅ =	113.8						
D ₁₀₀ =	256.0						

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

UT3 R3, Reachwide

		Diame	ter (mm)	Particle Count			Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	5	45	50	50	50
	Very fine	0.062	0.125					50
-	Fine	0.125	0.250		5	5	5	55
AND	Medium	0.25	0.50	1		1	1	56
יל	Coarse	0.5	1.0	1		1	1	57
	Very Coarse	1.0	2.0					57
	Very Fine	2.0	2.8					57
	Very Fine	2.8	4.0					57
	Fine	4.0	5.6	1		1	1	58
	Fine	5.6	8.0					58
NEL	Medium	8.0	11.0	2		2	2	60
GRA	Medium	11.0	16.0	5		5	5	65
	Coarse	16.0	22.6	11		11	11	76
	Coarse	22.6	32	8		8	8	84
	Very Coarse	32	45	3		3	3	87
	Very Coarse	45	64	4		4	4	91
	Small	64	90	2		2	2	93
alt	Small	90	128	1		1	1	94
COBL	Large	128	180	2		2	2	96
	Large	180	256	2		2	2	98
	Small	256	362	2		2	2	100
OFR	Small	362	512					100
aout	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide							
Channel materials (mm)							
D ₁₆ =	Silt/Clay						
D ₃₅ =	Silt/Clay						
D ₅₀ =	Silt/Clay						
D ₈₄ =	32.0						
D ₉₅ =	151.8						
D ₁₀₀ =	362.0						

APPENDIX 5. Hydrology Summary Data and Plots

Table 14. Verification of Bankfull EventsLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

Reach	MY	Date of Occurrence	Date of Data Collection	Method
UT2B		6/8/2019	6/8/2019	Stream Gage
LIT2 Peach 2	MY1	6/8/2019 - 6/9/2019	6/8/2019 - 6/9/2019	Stream Gage
UTS NEGULTS		6/23/2019	6/23/2019	Stream Gage

Table 15. Wetland Gage Attainment SummaryLone Hickory Mitigation SiteDMS Project No. 97135Monitoring Year 1 - 2019

Summary of Groundwater Gage Results for Monitoring Years 1 through 7									
Gago	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)								
Gage	MY1	MY2	MY3	MY4	MY5	MY6	MY7		
Defenses	Yes/25 days								
Reference	(12.1%)								
1	Yes/25 days								
1	(12.1%)								
2	Yes/23 days								
2	(11.1%)								
2	Yes/24 days								
5	(11.6%)								
4	Yes/109 days								
4	(52.7%)								
5	Yes/48 days								
J	(23.2%)								
6	Yes/23 days								
0	(11.1%)								
7	Yes/24 days								
/	(11.6%)								
Q	Yes/48 days								
0	(23.2%)								
٩	Yes/26 days								
5	(12.6%)								
10 ¹	N/A								

¹ Groundwater gage 10 was installed at the end of the MY1 growing season. Success criteria not applicable in MY1.

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Lone Hickory Mitigation Site DMS Project No. 97135 **Monitoring Year 1 - 2019**

Recorded In-stream Flow Events Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

Monthly Rainfall Data

Lone Hickory Mitigation Site DMS Project No. 97135 Monitoring Year 1 - 2019

2019 rainfall collected by NC CRONOS Station, Yadkinville 0.2 E, NC

30th and 70th percentile rainfall data collected from WETS station Yadkinville 6E